×

zbMATH — the first resource for mathematics

de Rham diagram for \(hp\) finite element spaces. (English) Zbl 0955.65084
Summary: We prove that the \(hp\) finite elements for \({\mathbf H}(\text{curl})\) spaces, introduced by L. Demkowicz and L. Vardapetyan [Comput. Methods Appl. Mech. Eng. 152, No. 1-2, 103-124 (1998; Zbl 0994.78011)], fit into a general de Rahm diagram involving \(hp\) approximations. The corresponding interpolation operators generalize the notion of \(hp\) interpolation introduced by J. T. Oden, L. Demkowicz, W. Rachowicz and T. A. Westermann [ibid. 77, No. 1/2, 113-180 (1989; Zbl 0723.73075)] and are different from the classical operators of J. C. Nedelec [Numer. Math. 50, 57-81 (1986; Zbl 0625.65107)] and of P. A. Raviart and J. M. Thomas [Math. Comput. 31, 391-413 (1977; Zbl 0364.65082)].

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Software:
HP90; 2Dhp90
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Demkowicz, L.; Vardapetyan, L., Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements, Computer methods in applied mechanics and engineering, 152, 1/2, 103-124, (1998) · Zbl 0994.78011
[2] Oden, J.T.; Demkowicz, L.; Rachowicz, W.; Westermann, T.A., Towards a universal h-p adaptive finite element strategy, part 2. A posteriori error estimation, Comp. meth. appl. meth. eng., 77, 113-180, (1989) · Zbl 0723.73075
[3] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer-Verlag Berlin · Zbl 0788.73002
[4] Bossavit, A., Un nouveau point de vue sur LES éléments finis mixtes, Matapli (bulletin de la société de mathématiques appliquëes et industrielles), 23-35, (1989)
[5] Demkowicz, L.; Gerdes, K.; Schwab, C.; Bajer, A.; Walsh, T., HP90: A general and flexible Fortran 90 hp-FE code, Computing and visualization in science, 1, 145-163, (1998) · Zbl 0912.68014
[6] L. Demkowicz, T. Walsh, K. Gerdes and A. Bajer, 2D hp-adaptive finite element package. Fortran 90 implementation (2Dhp90), TICAM Report 98-14, The University of Texas at Austin, Austin, TX 78712. · Zbl 0912.68014
[7] Rachowicz, W.; Demkowicz, L., A two-dimensional hp-adaptive finite element package for electromagnetics, Computer methods in applied mechanics and engineering, TICAM report 98-15, (July 1998), (to appear)
[8] W. Rachowicz and L. Demkowicz, A three-dimensional hp-adaptive finite element package for electromagnetics, (in preparation). · Zbl 0994.78012
[9] Nedelec, J.C., A new family of mixed finite elements in \(R\)^{3}, Numerische Mathematik, 50, 57-81, (1986) · Zbl 0625.65107
[10] Nedelec, J.C., Mixed finite elements in \(R\)^{3}, Numerische Mathematik, 35, 315-341, (1980) · Zbl 0419.65069
[11] Vardapetyan, L.; Demkowicz, L., hp-adaptive finite elements in electromagnetics, Computers methods in applied mechanics and engineering, 169, 331-344, (1999) · Zbl 0956.78013
[12] Raviart, P.A.; Thomas, J.M., Primal hybrid finite element methods for 2^{nd} order elliptic equations, Mathematics of computation, 31, 138, 391-413, (1977) · Zbl 0364.65082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.