Transitive lattice-ordered permutation groups. (English) Zbl 0147.01204


group theory
Full Text: DOI EuDML


[1] Birkhoff, G.: Lattice theory. Amer. Math. Soc. Providence, 1948. · Zbl 0033.10103
[2] Clifford, A. H.: A non-commutative ordinally simple linearly ordered group. Proc. Am. Math. Soc.2, 902-903 (1952). · Zbl 0044.01301
[3] Fuchs, L.: Partially ordered algebraic systems. Reading: Addison-Wesley 1963. · Zbl 0137.02001
[4] Holland, C.: The lattice-ordered group of automorphisms of an ordered set. Michigan Math. J.10, 399-408 (1963). · Zbl 0116.02102
[5] Holland, C. A class of simple lattice-ordered groups (to appear in Proc. Am. Math. Soc.) · Zbl 0135.06401
[6] Kurosh, A. G.: The theory of groups, Vol. 1. Chelsea, New York, 1960. · Zbl 0094.24501
[7] Lloyd, J. T.: Lattice ordered groups and o-permutation groups. Dissertation, Tulane University, 1964.
[8] Ohkuma, T.: Sur quelques ensembles ordonn?s lin?airment. Fund. Math.43, 326-337 (1954). · Zbl 0073.27102
[9] Treybig, L. B.: Concerning homogeneity in totally ordered, connected topological space. Pacific J. Math.13, 1417-1421 (1963). · Zbl 0119.17902
[10] Wielandt, H.: Unendliche Permutationsgruppen. Lecture notes, University of T?bingen, 1960.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.