×

On Mahler’s classification of transcendental numbers. (English) Zbl 0147.03403


Keywords:

number theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Baker, A., Continued fractions of transcendental numbers.Mathematika, 9 (1962), 1–8. · Zbl 0105.03903
[2] Davenport, H., &Roth, K. F., Rational approximations to algebraic numbers.Mathematika, 2 (1955), 160–167. · Zbl 0066.29302
[3] LeVeque, W. J., On Mahler’sU-numbers.J. London Math. Soc., 28 (1953), 220–229. · Zbl 0053.36203
[4] LeVeque, W. J. Topics in number theory. Reading, Mass., 1956, Vol. 2. · Zbl 0070.03804
[5] Mahler, K., Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I.J. reine angew. Math., 166 (1932), 118–136. · JFM 57.0242.03
[6] –, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen.Proc. Akad. Wetensch. Amsterdam, 40 (1937), 421–428. · JFM 63.0156.01
[7] Maillet, E.,Introduction à la théorie des nombres transcendents. Paris, 1906. · JFM 37.0237.02
[8] Perron, O. Die Lehre von den Kettenbrüchen. Leipzig und Berlin, 1929. · JFM 55.0262.09
[9] Roth, K. F., Rational approximations to algebraic numbers.Mathematika, 2 (1955), 1–20. · Zbl 0064.28501
[10] Schneider, Th., Über die Approximation algebraischer Zahlen.J. reine angew. Math., 175 (1936), 182–192. · JFM 62.0185.02
[11] Schneider, Th.,Einführung in die transzendenten Zahlen. Berlin, Göttingen, Heidelberg, 1957. · Zbl 0077.04703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.