×

Boundedness and periodicity of solutions of a certain system of third- order non-linear differential equations. (English) Zbl 0148.06701


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Pliss, V. A., Dokl. Akad, Nauk SSR, 139, 302-304 (1961)
[2] Ezeilo, J. O. C., Proc. Camb. Philos. Soc., 59, 111-116 (1963)
[3] Ezeilo, J. O. C., J. Lond. Math. Soc., 38, 11-16 (1963)
[4] Ezeilo, J. O. C., Proc. Camb. Philos. Soc., 56, 381-389 (1960)
[5] Ezeilo, J. O. C., Ann. Mat. Pura Appl., LXVI, 233-250 (1964)
[6] Ezeilo, J. O. C., Proc. Lond. Math. Soc., 9, 3, 74-114 (1959)
[7] Tabueva, V. A., Prikl. Mat. Meh., 25, 5, 961-962 (1961)
[8] Barbasin, E. A., Prikl. Mat. Meh., 16, 629-632 (1952)
[9] S. Perlis,Theory of Matrices. (Addison-Wesley Publishing Coy. INC. Third printing - July 1958). · Zbl 0046.24102
[10] G. E. H. Reuter,Notes on the existence of periodic solutions of certain differential equations (unpublished).
[11] J. Cronin,Fixed points and topological degree in nonlinear analysis, American Mathematical Society, 1963, p. 133. · Zbl 0117.34803
[12] Schaefer, H., Math. Ann., 129, 415-416 (1955) · Zbl 0064.35703
[13] Leray, J.; Schauder, J., Ann. Sci. E’ norm. sup., 51, 45-78 (1934)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.