×

zbMATH — the first resource for mathematics

Die Klasse metrischer linearer Räume \({\mathcal L}_ \Phi\). (German) Zbl 0148.11602

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Day, M. M.: The spacesL p with 0<p<1. Bull. Am. Math. Soc.46, 816-823 (1940). · Zbl 0024.21101 · doi:10.1090/S0002-9904-1940-07308-2
[2] Gramsch, B.: Integration und holomorphe Funktionen in lokalbeschränkten Räumen. Math. Ann.162, 190-210 (1965). · Zbl 0134.12303 · doi:10.1007/BF01361943
[3] ?? ?-Transformationen in lokalbeschränkten Vektorräumen. Math. Ann.165, 135-151 (1966). · Zbl 0138.07404 · doi:10.1007/BF01344009
[4] Halmos, P. R.: Measure theory. New York: van Nostrand 1950. · Zbl 0040.16802
[5] Hewitt, E., andK. Ross: Abstract harmonic analysis. Berlin-Göttingen-Heidelberg: Springer 1963. · Zbl 0115.10603
[6] Köthe, G.: Topologische lineare Räume. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0093.11901
[7] Landsberg, M.: Lineare topologische Räume, die nicht lokalkonvex sind. Math. Z.65, 104-112 (1956). · Zbl 0070.11301 · doi:10.1007/BF01473873
[8] Livingston, A. E.: The spaceH p , 0<p<1, is not normable. Pacific. Math.3, 613-616 (1953). · Zbl 0051.08702
[9] Matuszewska, W., andW. Orlicz: A note on the theory ofs-normed spaces of ?-integrable functions. Studia Math.21, 107-115 (1961). · Zbl 0202.39903
[10] Mazur, S., etW. Orlicz: Sur les espaces métriques linéaires. I. Studia Math.10, 184-208 (1948). · Zbl 0036.07801
[11] ?? andW. Orlicz: On some classes of linear spaces. Studia Math.17, 97-119 (1958). · Zbl 0085.32203
[12] Nakano, H.: Concave modulares. J.Math. Soc. Japan5, 29-49 (1953). · Zbl 0050.33402 · doi:10.2969/jmsj/00510029
[13] Zaanen, A. C.: Linear analysis. Groningen: North Holland Publ. Comp. 1960. · Zbl 0109.08104
[14] Zelasko, W.: On locally bounded andm-convex topological algebras. Studia Math.19, 333-356 (1960).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.