×

zbMATH — the first resource for mathematics

The microbundle representation theorem. (English) Zbl 0148.17502

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexander J. W., On the deformation of ann-cell.Proc. Nat. Acad. Sci. U.S.A., 9 (1923), 406–407. · doi:10.1073/pnas.9.12.406
[2] Arens, R., Topologies for homeomorphism groups.Amer. J. Math., 68 (1946), 593–610. · Zbl 0061.24306 · doi:10.2307/2371787
[3] Dold, A., Partitions of unity in the theory of fibrations.Ann. of Math., 78 (1963), 223–225. · Zbl 0203.25402 · doi:10.2307/1970341
[4] Hirsch, M. W., On non linear cell bundles. To appear. · Zbl 0178.57301
[5] Hirsch, M. W. & Mazur, B., Smoothings of piecewise linear manifolds. To appear. · Zbl 0298.57007
[6] Holm, P., Microbundles and bundles.Bull. Amer. Math. Soc., 72 (1966), 545–548. · Zbl 0139.16703 · doi:10.1090/S0002-9904-1966-11536-7
[7] Holm, P., Microbundles andS-duality. To appear. (See alsoBull. Amer. Math. Soc., 72 (1966), 549–554.) · Zbl 0139.16704
[8] Milnor, J., Microbundles. Part 1.Topology., 3 (1964), 53–79. · Zbl 0124.38404 · doi:10.1016/0040-9383(64)90005-9
[9] Spanier, E. H.,Algebraic topology. McGraw-Hill (1966). · Zbl 0145.43303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.