Kagiwada, H. H.; Kalaba, R. E. A practical method for determining Green’s functions using Hadamard’s variational formula. (English) Zbl 0148.33703 J. Optim. Theory Appl. 1, 33-39 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 Documents MSC: 34B27 Green’s functions for ordinary differential equations Keywords:ordinary differential equations PDF BibTeX XML Cite \textit{H. H. Kagiwada} and \textit{R. E. Kalaba}, J. Optim. Theory Appl. 1, 33--39 (1967; Zbl 0148.33703) Full Text: DOI OpenURL References: [1] Courant, R., andHilbert, D.,Methods of Mathematical Physics, Vol. I, Interscience Publishers, New York, 1953. · Zbl 0051.28802 [2] Frank, P., andMises, R. V.,Die Differential- und Integralgleichungen der Mechanik und Physik, Mary S. Rosenberg, New York, 1943. · Zbl 0061.16603 [3] Bergman, S., andSchiffer, M.,Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953. · Zbl 0053.39003 [4] Bellman, R. E.,Functional Equations in the Theory of Dynamic Programming?VIII: The Variation of Green’s Functions?One-Dimensional Case, Proceedings of the National Academy of Sciences, Vol. 43, No. 9, 1957. · Zbl 0081.14402 [5] Kagiwada, H. H., andKalaba, R. E.,An Initial-Value Method Suitable for the Calculation of Certain Fredholm Resolvents, The RAND Corporation, Report No. RM-5258-PR, 1967. [6] Kagiwada, H. H., andKalaba, R. E.,Initial-Value Methods for the Basic Boundary-Value Problem and Integral Equation of Radiative Transfer, Journal of Computational Physics, Vol. 1, No. 3, 1967. · Zbl 0149.37001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.