×

zbMATH — the first resource for mathematics

Fortsetzbarkeit stetiger Abbildungen und Kompaktheitsgrad topologischer Räume. (Extendability of continuous mappings and compactness degree of topological spaces). (German) Zbl 0149.19501

MSC:
54D30 Compactness
54C05 Continuous maps
Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Engelking, R.: Remarks on real-compact spaces. Fund. Math.55, 303-308 (1964). · Zbl 0134.18601
[2] Frolîk, Z.: Generalisations of compact and Lindelöf spaces. Czechosl. Math. J.9 (84), 172-217 (1959). · Zbl 0098.14201
[3] ?: A generalisation of realcompact spaces. Czechosl. Math. J.13 (88), 127-138 (1963). · Zbl 0112.37603
[4] Gillman, L., andM. Jerison: Rings of continuous functions. Princeton: van Nostrand 1960. · Zbl 0100.32202
[5] Herrlich, H.: ?-kompakte Räume (erscheint in Math. Z.).
[6] Hewitt, E.: Rings of real-valued continuous functions. Trans. Am. Math. Soc.64, 54-99 (1948). · Zbl 0032.28603 · doi:10.1090/S0002-9947-1948-0026239-9
[7] ?: A note on extensions of continuous functions. An. Acad. Brasil. Ci21, 175-179 (1949).
[8] Kat?tov, M.: On real-valued functions in topological spaces. Fund. Math.38, 85-91 (1951). · Zbl 0045.25704
[9] McDowell, R. H.: Extension of functions from dense subspaces. Duke Math. J.25, 297-304 (1948). · Zbl 0081.16601 · doi:10.1215/S0012-7094-58-02526-2
[10] Shirota, T.: A class of topological spaces. Osaka Math. J.4, 23-40 (1952). · Zbl 0047.41704
[11] Taîmanov, A. D.: On extension of continuous mappings of topological spaces. Math. Sbornik N.S.31 (73), 459-463 (1952).
[12] Tychonoff, A.: Über die topologische Erweiterung von Rärmen. Math. Ann.102, 544-561 (1930). · JFM 55.0963.01 · doi:10.1007/BF01782364
[13] Vulih, B. Z.: On the extension of continuous functions in topological spaces. Math. Sbornik N.S.30 (72), 161-170 (1952).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.