×

zbMATH — the first resource for mathematics

A proof of the independence of the continuum hypothesis. (English) Zbl 0149.25302

Keywords:
set theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cohen, Paul J., The independence of the continuum hypothesis, I, II.Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1143–1148;ibid. 51 (1964), 105–110. · Zbl 0192.04401 · doi:10.1073/pnas.50.6.1143
[2] -, Independence results in set theory.The Theory of Models, Proc. 1963 Internat. Symposium, Berkeley, Amsterdam, 1965, pp. 39–54.
[3] -, Set theory and the continuum hypothesis. New York (1966). · Zbl 0182.01301
[4] Easton, William B.,Powers of regular cardinals. Ph.D Thesis, Princeton, 1964.
[5] Halmos, Paul R.,Lectures on Boolean algebras. Van Nostrand Mathematical Studies, Princeton, 1963. · Zbl 0114.01603
[6] Rasiowa, Helena andRoman Sikorski,The mathematics of metamathematics. Monografie Matematyczne, Vol. 41, Warsaw, 1963. · Zbl 0122.24311
[7] Sacks, Gerald E., Measure-theoretic uniformity.Bull. Amer. Math. Soc. 73 (1967), 169–174. · Zbl 0164.31503 · doi:10.1090/S0002-9904-1967-11701-4
[8] Scott, Dana andRobert Solovay, Boolean algebras and forcing, (in preparation).
[9] Solovay, Robert, The measure problem. Abstract 65T-62,Notices Amer. Math. Soc. 12 (1965), 217.
[10] Vopenka, Petr, The limits of sheaves and applications on constructions of models.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 189–192. · Zbl 0147.25803
[11] –, On model of set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 267–272. · Zbl 0147.25901
[12] Jech, T. andA. Sochor, On \(\Theta\)-model of the set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 297–303. · Zbl 0168.01001
[13] Marek, W., A remark on independence proofs.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 543–545. · Zbl 0147.25801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.