×

zbMATH — the first resource for mathematics

Derivations and automorphisms of operator algebras. (English) Zbl 0149.34403

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blattner, R.: Automorphic group representations. Pacific J. Math.8, 665–677 (1958). · Zbl 0087.32001
[2] Bott, R.: The space of loops on a Lie group. Mich. Math. J.5, 35–61 (1958). · Zbl 0096.17701 · doi:10.1307/mmj/1028998010
[3] Borchers, H.: Energy and momentum as observables in quantum field theory. Commun. Math. Phys.2, 49–54 (1966). · Zbl 0138.45201 · doi:10.1007/BF01773340
[4] Chevalley, C.: Lie Groups. Princeton: University Press 1946. · Zbl 0063.00842
[5] Dell’Antonio, G.: On some groups of automorphisms of physical observables. Commun. Math. Phys.2, 384–397 (1966). · Zbl 0141.41502 · doi:10.1007/BF01773362
[6] Dixmier, J.: Les algèbres d’opérateurs dans l’espace hilbertien. Paris: Gauthier-Villars 1957. · Zbl 0088.32304
[7] —- LesC*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.
[8] Dunford, N., andJ. Schwartz: Linear operators, Part I. New York: 1958. · Zbl 0088.32102
[9] Gardner, L.: An invariance theorem for representations of Banach algebras. Proc. Am. Math. Soc.16, 983–986 (1965). · Zbl 0135.36101 · doi:10.1090/S0002-9939-1965-0182890-2
[10] Gelfand, I., andM. Neumark: On the imbedding of normed rings into the ring of operators in Hilbert space. Rec. Math. (mat. Sbornik) N.S.12, 197–213 (1943). · Zbl 0060.27006
[11] Glimm, J.: On a certain class of operator algebras. Trans. Am. Math. Soc.95, 318–340 (1960). · Zbl 0094.09701 · doi:10.1090/S0002-9947-1960-0112057-5
[12] —-, andR. Kadison: Unitary operators inC*-algebras. Pacific J. Math.10, 547–556 (1960). · Zbl 0152.33001
[13] Hilton, P., andS. Wylie: Homology theory. Cambridge: University Press 1960.
[14] Hurewicz, W., andH. Wallman: Dimension theory. Princeton: University Press 1948. · Zbl 0036.12501
[15] Kadison, R.: Unitary invariants for representations of operator algebras. Ann. of Math.66, 304–379 (1957). · Zbl 0084.10705 · doi:10.2307/1970002
[16] —- Derivations of operator algebras. Ann. Math.83, 280–293 (1966). · Zbl 0139.30503 · doi:10.2307/1970433
[17] —- Transformations of states in operator theory and dynamics. Topology,3 Suppl. 2, 177–198 (1965). · Zbl 0129.08705 · doi:10.1016/0040-9383(65)90075-3
[18] —-, andJ. Ringrose: Derivations of operator group algebras. Am. J. Math. 88, 562–576 (1966). · Zbl 0149.34401 · doi:10.2307/2373142
[19] – Automorphisms of operator algebras. Bull. Am. Math. Soc. (to appear). · Zbl 0149.34402
[20] Kaplansky, I.: Modules over operator algebras. Am. J. Math.75, 839–859 (1953). · Zbl 0051.09101 · doi:10.2307/2372552
[21] Krein, M., andD. Milman: On the extreme points of regular convex sets. Studia Math.9, 133–137 (1940). · Zbl 0063.03360
[22] Sakai, S.: On topological properties ofW*-algebras. Proc. Japan Acad.33, 439–444 (1957). · Zbl 0081.11103 · doi:10.3792/pja/1195524953
[23] —- On a conjecture ofKaplansky. Môhoku Math. J.12, 31–33 (1960). · Zbl 0109.34201 · doi:10.2748/tmj/1178244484
[24] —- Derivations ofW*-algebras. Ann. Math.83, 273–279 (1966). · Zbl 0139.30601 · doi:10.2307/1970432
[25] Schwartz, J.: Lectures onW*-algebras. NYU notes (mimeographed), 1964.
[26] Segal, I.: Irreducible representations of operator algebras. Bull. Am. Math. Soc.53, 73–88 (1947). · Zbl 0031.36001 · doi:10.1090/S0002-9904-1947-08742-5
[27] Shale, D., andW. Stinespring: States of the Clifford algebra. Ann. Math.80, 365–381 (1964). · Zbl 0178.49301 · doi:10.2307/1970397
[28] Singer, I.: Automorphisms of finite factors. Am. J. Math.77, 117–133 (1955). · Zbl 0064.11001 · doi:10.2307/2372424
[29] Steenrod, N.: Fibre bundles. Princeton: University Press 1951. · Zbl 0054.07103
[30] Suzuki, N.: A linear representation of a countably infinite group. Proc. Japan Acad.34, 575–579 (1958). · Zbl 0097.10904 · doi:10.3792/pja/1195524522
[31] Toda, H.: A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups. Mem. Coll. Sci. Univ. Kyoto Ser. A. Math.32, 103–119 (1959). · Zbl 0106.16403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.