Benson, D. C. An elementary solution of a variational problem of aerodynamics. (English) Zbl 0149.44508 J. Optimization Theory Appl. 1, 146-150 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document Keywords:fluid mechanics PDF BibTeX XML Cite \textit{D. C. Benson}, J. Optim. Theory Appl. 1, 146--150 (1967; Zbl 0149.44508) Full Text: DOI OpenURL References: [1] Miele, A.,Optimum Transversal Contour of a Nonlifting Body in Newtonian Flow, Rice University, Aero-Astronautics Report No. 8, 1965. [2] Reyn, J. W.,Cones of Minimum Drag in Newtonian Flow, Journal of the Astronautical Sciences, Vol. 12, No. 2, 1965. [3] Miele, A., andSaaris, G. R.,On the Optimum Transversal Contour of a Body at Hypersonic Speeds, Astronautica Acta, Vol. 9., No. 3, 1963. · Zbl 0108.20001 [4] Miele, A., andHull, D. G.,Sufficiency Proofs for the Problem of the Optimum Transversal Contour, Rice University, Aero-Astronautics Report No. 18, 1966. · Zbl 0158.44303 [5] Benson, D. C.,Inequalities Involving Integrals of Functions and Their Derivatives, Journal of Mathematical Analysis and Applications, Vol. 17, No. 2, 1967. · Zbl 0146.07404 [6] Bellman, R.,On a Variational Problem of Miele, Astronautica Acta, Vol. 9, No. 3, 1963. · Zbl 0146.35604 [7] Courant, R., andHilbert, D.,Methods of Mathematical Physics, John Wiley and Sons (Interscience Publishers), New York, 1953. · Zbl 0051.28802 [8] Miele, A.,Simplified Approach to the Problem of the Optimum Transversal Contour (in Russian), Prikladnaya Matematika i Mekhanika, Vol. 31, No. 3, 1967. · Zbl 0204.26201 [9] Miele, A., andHull, D. G.,Sufficiency Proofs for the Problem of the Optimum Transversal Contour, SIAM Journal on Applied Mathematics, Vol. 15, No. 2, 1967. · Zbl 0158.44303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.