zbMATH — the first resource for mathematics

An axiomatization of the algebra of transformations over a set. (English) Zbl 0151.00702
ensemble est une algèbre (infinie), abstraite de transformations. Le résultat le plus important est la réciproque: Théorème: Toute algèbre abstraite de transformations infinie est isomorphe à une algèbre de transformations au-dessus d’un ensemble. D’autres résultats sont annoncés pour des articles ultérieurs.
Reviewer: A. Preller

03-XX Mathematical logic and foundations
Full Text: DOI EuDML
[1] Curry, H. B.: An analysis of logical substitution. Am. J. Math.51, 363-384 (1929). · JFM 55.0033.01 · doi:10.2307/2370728
[2] –, andR. Feys: Combinatory logic. Amsterdam 1958.
[3] Halmos, P. R.: Algebraic logic. New York: Chelsea 1962. · Zbl 0101.01101
[4] Menger, K.: Superassociative systems and logical functors. Math. Ann.157, 278-295 (1964). · Zbl 0126.03601 · doi:10.1007/BF01360871
[5] Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann.92, 305-316 (1924). · JFM 50.0023.01 · doi:10.1007/BF01448013
[6] Schweizer, B., andA. Sklar: The algebra of functions. Math. Ann.139, 366-382 (1960);143, 440-447 (1961). · Zbl 0095.10101 · doi:10.1007/BF01342844
[7] ?? A mapping-algebra with infinitely many operations. Coll. Math.9, 33-38 (1962). · Zbl 0103.24903
[8] Whitlock, H. L.: A composition algebra for multiplace functions. Math. Ann.157, 167-178 (1964). · Zbl 0126.03501 · doi:10.1007/BF01362672
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.