×

zbMATH — the first resource for mathematics

Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. (French) Zbl 0151.15401
Ann. Inst. Fourier 15, No. 1, 189-257 (1965); Colloques Int. Centre nat. Rech. Sci. 146, 189-258 (1965).

PDF BibTeX Cite
Full Text: DOI Numdam EuDML arXiv
References:
[1] R. COURANT and D. HILBERT, Methods of mathematical physics, vol. 2, New York (1962), 233. · Zbl 0099.29504
[2] J. DENY, Sur les espaces de Dirichlet Séminaire de théorie du potentiel (1958) (n° 5).
[3] E. DE GIORGI, Sulla differenziabilità e l’analicità delle estremali degli integrali multipli regolari, Mem. Accad. Sc. Torino Cl. Sci. Fis. Mat. (3), 3 (1957), 25-43. · Zbl 0084.31901
[4] E. GAGLIARDO, Proprietà di alcune classi di funzioni in più variabili Ricerche di Matematica, vol. VII (1958), 102-137. · Zbl 0089.09401
[5] R. M. HERVÉ, Un principe du maximum pour LES sous-solutions locales d’une équation uniformément elliptique de la forme Lu = - σi δ/δxi(σjaijδu/δxj) = 0, Annales de l’Institut Fourier, 14, 2 (1964), 493-508. · Zbl 0129.07202
[6] L. HÖRMANDER, Estimates for translation invariant operators in lv spaces, Acta Math., 104 (1960), 93-140. · Zbl 0093.11402
[7] F. JOHN and L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math., vol. 14 (1961), 415-426. · Zbl 0102.04302
[8] O. A. LADYZENSKAJA and N. N. URALT’SEVA, Quasi-linear elliptic equations and variational problems with many independent variables, Uspehi Matem. Nauk., vol. 16 (1961), transl. vol. 1, 17-91. · Zbl 0142.37602
[9] W. LITTMAN, G. STAMPACCHIA and H. F. WEINBERGER, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Normale Sup. Pisa, vol. 17 (1963), 43-77. · Zbl 0116.30302
[10] C. MIRANDA, Alcune osservazioni sulla maggiorazione in lv delle soluzioni deboli delle equazioni ellittiche del secondo ordine, Ann. di Matematica, vol. 61 (1963), 151-170. · Zbl 0134.09102
[11] C. B. MORREY, JR., Second order elliptic equations in several variables and Hölder continuity, Math. Z., (1959), 146-164. · Zbl 0094.07802
[12] J. MOSER, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math., vol. XIV (1961), 577-591. · Zbl 0111.09302
[13] L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Normale Sup. Pisa, vol. 13 (1959), 116-162. · Zbl 0088.07601
[14] J. SERRIN, Local behavior of solutions of quasi-linear equations, Acta Mathematica, vol. III (1964), 247-302. · Zbl 0128.09101
[15] J. SERRIN, Isolated singularities of solutions of quasi-linear equations (à paraitre). · Zbl 0173.39202
[16] G. STAMPACCHIA, Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per le equazioni del secondo ordine ellittiche, Ann. Scuola Normale Sup. Pisa, serie III, vol. XII, fasc. III (1958), 223-245. · Zbl 0082.09701
[17] G. STAMPACCHIA, Problemi al contorno ellittici, con dati discontinui, dotati di soluzioni holderiane, Ann. Mat. Pura Appl., 51 (1960), 1-38. · Zbl 0204.42001
[18] G. STAMPACCHIA, Régularisation des solutions de problèmes aux limites elliptiques à données discontinues, Inter. Symp. on Lin. Spaces, Jerusalem (1960), 399-408. · Zbl 0114.30403
[19] G. STAMPACCHIA, Équations elliptiques à données discontinues, Séminaire Schwartz (1960/1961) (n° 4). · Zbl 0092.10401
[20] G. STAMPACCHIA, On some regular multiple integrale problems in the calculus of variations, Comm. Pure Appl. Math., vol. XVI (1963), 383-421. · Zbl 0138.36903
[21] G. STAMPACCHIA, Some limit cases of lp-estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math., vol. XVI (1963), 505-510. · Zbl 0147.09202
[22] G. STAMPACCHIA, Formes bilinéaires coercitives sur LES ensembles convexes, C.R. Acad. Sc. Paris, t. 258 (1964), 4413-4416. · Zbl 0124.06401
[23] G. STAMPACCHIA, Équations elliptiques du second ordre à coefficients discontinus, Séminaire sur les équations aux dérivées partielle, Collège de France (Mai 1964).
[24] A. ZYGMUND, On a théorem of Marcinkiewicz concerning interpolation of operations, Journal de Mathématiques, t. 35 (1956), 223-248. · Zbl 0070.33701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.