×

On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems. (English) Zbl 0151.20203


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, 1965.
[2] Agmon, Comm. Pure Appl. Math. 15 pp 119– (1962)
[3] Bergendal, Med. Lunds Univ. Mat. Sem. 15 pp 1– (1959)
[4] Browder, C.R. Acad. Sci. Paris 236 pp 2140– (1953)
[5] Browder, Math. Ann. 145 pp 81– (1962)
[6] Carleman, Ber. der Sächs. Akad. Wiss. Leipzig. Mat.-Nat. Kl. 88 pp 119– (1936)
[7] Ehrling, Math. Scand. 2 pp 267– (1954) · Zbl 0056.32304 · doi:10.7146/math.scand.a-10414
[8] Gårding, Math. Scand. 1 pp 237– (1953) · Zbl 0053.39102 · doi:10.7146/math.scand.a-10382
[9] Maurin, Math. Scand. 9 pp 359– (1961) · Zbl 0107.32702 · doi:10.7146/math.scand.a-10641
[10] Odhnoff, Med. Lunds Univ. Mat. Sem. 14 pp 1– (1959)
[11] Pleijel, Ark. Mat. Astr. Fys. 27 pp 1– (1940)
[12] Pleijel, Amer. J. Math. 70 pp 892– (1948)
[13] Green’s functions and asymptotic distribution of eigenvalues and eigenfunctions, Proc. Symposium on Spectral Theory and Differential Problems, Stillwater, Oklahoma, 1951, pp. 439–454.
[14] Certain indefinite differential eigenvalue problems–The asymptotic distribution of their eigenfunctions, Proc. International Conf. on Partial Diff. Equations and Cont. Mech., Univ. of Wisconsin Press, 1961, pp. 19–37.
[15] Sobolev, Mat. Sb. N.S. 4 pp 471– (1938)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.