×

Homotopy-abelian Lie groups. (English) Zbl 0152.01103


Keywords:

group theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] José Adem, Relations on iterated reduced powers, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 636 – 638. · Zbl 0052.19101
[2] Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115 – 207 (French). · Zbl 0052.40001 · doi:10.2307/1969728
[3] Armand Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397 – 432. · Zbl 0066.02002
[4] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409 – 448 (French). · Zbl 0050.39603 · doi:10.2307/2372495
[5] I. M. James, On H-spaces and their homotopy groups, (to be published in Oxford Quart. J. of Math.). · Zbl 0097.16102
[6] Ioan James and Emery Thomas, Which Lie groups are homotopy-abelian?, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 737 – 740. · Zbl 0085.25801
[7] Hans Samelson, Topology of Lie groups, Bull. Amer. Math. Soc. 58 (1952), 2 – 37. · Zbl 0047.16701
[8] Jean-Pierre Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258 – 294 (French). · Zbl 0052.19303 · doi:10.2307/1969789
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.