×

zbMATH — the first resource for mathematics

On Köthe rings. (English) Zbl 0152.01903

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Asano, Keizo: Über verallgemeinerte Abelsche Gruppen mit hyperkomplexen Operatorenring und ihre Anwendungen. Jap. J. Math.15, 231-253 (1939). · Zbl 0022.10701
[2] ?? Über Hauptidealringe mit Kettensatz. Osaka Math. J.1, 52-61 (1949). · Zbl 0041.16503
[3] Bass, Hyman: Finitistic dimension and a homological generalization of semiprimary rings. Trans. Am. Math. Soc.95, 466-488 (1960). · Zbl 0094.02201
[4] Chase, Stephen U.: Direct product of modules. Trans. Am. Math. Soc.97, 457-473 (1960). · Zbl 0100.26602
[5] Cohen, Irving S.: Commutative rings with restricted minimum condition. Duke Math. J.17, 27-42 (1950). · Zbl 0041.36408
[6] ??, andIrving Kaplansky: Rings for which every module is a direct sum of cyclic modules. Math. Z.54, 97-101 (1951). · Zbl 0043.26702
[7] Faith, Carl: Rings with ascending condition on annihilators. Nagoya Math. J. (1966). · Zbl 0154.03001
[8] –, andElbert A. Walker: Direct sum representations of injective modules. J. Algebra (to appear).
[9] Ikeda, Masatoshi: A characterization of quasi-Frobenius rings. Osaka Math. J.4, 203-210 (1952). · Zbl 0048.02501
[10] Kawada, Yutaka: On Köthe’s problem concerning algebras for which every indecomposable module is cyclic, II. Science Reports, Tokyo Kyoiku Daigaku8, 1-62 (1963).
[11] Köthe, Gottfried: Verallgemeinerte Abelsche Gruppen mit hyperkomplexen Operatorenring. Math. Z.39, 31-44 (1934). · Zbl 0010.01102
[12] Matlis, Eben: Injective modules over Prüfer rings. Nagoya Math. J.15, 57-69 (1959). · Zbl 0090.25305
[13] Nakayama, Tadasi: On Frobeniusean algebras, I. Ann. Math.40, 611-633 (1939). · Zbl 0021.29402
[14] ?? On Frobeniusean algebras, II. Ann. Math.42, 1-21 (1941). · Zbl 0026.05801
[15] ?? Note on uni-serial and generalized uni-serial rings. Proc. Imp. Acad. Tokyo16, 285-289 (1940). · Zbl 0024.09904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.