×

zbMATH — the first resource for mathematics

Parameter and domain dependence of eigenvalues of elliptic partial differential equations. (English) Zbl 0152.11302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] solRayleigh, J.W., The Theory of Sound, 2 vols., 2nd ed., Cambridge 1894–1896.
[2] solHadamard, J., Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoires des Savants Etrangers 33 (1908).
[3] Garabedian, P.R., & M. Schiffer, Variational problems in the theory of elliptic partial differential equations. Journal of Rational Mechanics and Analysis 2, 137–171 (1953). · Zbl 0050.10002
[4] Garabedian, P.R., & M. Schiffer, Convexity of domain functionals. Journal d’Analyse Mathématique 2, 281–368 (1953). · Zbl 0052.33203 · doi:10.1007/BF02825640
[5] Pólya, G., & M. Schiffer, Convexity of functionals by transplantation. Journal d’Analyse Mathématique 3, 246–344 (1953). · Zbl 0056.32701
[6] Schiffer, M., Variation of domain functional. Bulletin of American Mathematical Society. 60, 303–328(1954). · Zbl 0056.32702 · doi:10.1090/S0002-9904-1954-09815-4
[7] solLin, C.C., Theory of Hydrodynamic Stability. Cambridge 1955 (see p. 122–123).
[8] Joseph, D.D., Nonlinear stability of the Boussinesq equations by the method of energy. Archive for Rational Mechanics and Analysis 22, 163–184 (1966). · Zbl 0141.43803 · doi:10.1007/BF00266474
[9] solWeinberger, H., Variational Methods for Eigenvalue Problems. University of Minnesota Bookstore 1962.
[10] solReid, W., The Stability of Parallel Flows. Basic Developments in Fluid Dynamic (M. Holt, ed.). Academic Press 1965.
[11] Segel, L., Nonlinear Hydrodynamic Stability Theory and its Application to Thermal Convection and Curved Flow. In: Non-Equilibrium Thermodynamics: Variational Techinques and Stability (R.J. Donnelly, ed.). Chicago: University of Chicago Press 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.