×

zbMATH — the first resource for mathematics

Discrete series for semisimple Lie groups. I: Construction of invariant eigendistributions. (English) Zbl 0152.13402

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borel, A., &Harish-Chandra, Arithmetic subgroups of algebraic groups.Ann. of Math., 75 (1962), 485–535. · Zbl 0107.14804 · doi:10.2307/1970210
[2] Harish-Chandra, Representations of semisimple Lie groups, VI.Amer. J. Math., 78 (1956), 564–628. · Zbl 0072.01702 · doi:10.2307/2372674
[3] –, The characters of semisimple Lie groups.Trans. Amer. Math. Soc., 83 (1956), 98–163. · Zbl 0072.01801 · doi:10.1090/S0002-9947-1956-0080875-7
[4] –, Differential operators on a semisimple Lie algebra.Amer. J. Math., 79 (1957), 87–120. · Zbl 0072.01901 · doi:10.2307/2372387
[5] –, Fourier transforms on a semisimple Lie algebra, I.Amer. J. Math., 79 (1957), 193–257. · Zbl 0077.25205 · doi:10.2307/2372680
[6] –, Fourier transforms on a semisimple Lie algebra, II.Amer. J. Math. 79 (1957), 653–686. · Zbl 0079.32901 · doi:10.2307/2372569
[7] –, A formula for semisimple Lie groups.Amer. J. Math., 79 (1957), 733–760. · Zbl 0080.10201 · doi:10.2307/2372432
[8] –, Spherical functions on a semisimple Lie group, I.Amer. J. Math., 80 (1958), 241–310. · Zbl 0093.12801 · doi:10.2307/2372786
[9] –, Invariant eigendistributions on semisimple Lie groups.Bull. Amer. Math. Soc., 69 (1963), 117–123. · Zbl 0115.10801 · doi:10.1090/S0002-9904-1963-10889-7
[10] –, Invariant distributions on Lie algebras.Amer. J. Math., 86 (1964), 271–309. · Zbl 0131.33302 · doi:10.2307/2373165
[11] –, Invariant differential operators and distributions on a semisimple Lie algebra.Amer. J. Math., 86 (1964), 534–564. · Zbl 0161.33804 · doi:10.2307/2373023
[12] –, Some results on an invariant integral on a semisimple Lie algebra.Ann. of Math., 80 (1964), 551–593. · Zbl 0152.13401 · doi:10.2307/1970664
[13] Harish-Chandra Invariant eigendistributions on a semisimple Lie algebra.Pub. Math. I.H.E.S., No. 27. · Zbl 0199.46401
[14] Harish-Chandra, Invariant eigendistributions on a semisimple Lie group.Trans. Amer. Math. Soc. To appear. · Zbl 0199.46402
[15] Schwartz L.,ThĂ©orie des distributions, II. Paris, Hermann, 1951. · Zbl 0042.11405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.