×

zbMATH — the first resource for mathematics

Tangent bundle of a manifold with a non-linear connection. (English) Zbl 0152.20404

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BORTOLLOTTI, E., Differential invariants of direction and point displacement. Annals of Math. 32 (1931), 361-377. Zentralblatt MATH: · Zbl 0002.05202
[2] FRIESECKE, H., Vektoribertragung, Richtungsubertragung, Metrik. Math. Annale 93 (1925), 101-118. · JFM 51.0573.02
[3] KAWAGUCHI, A., On the theory of non-linear connection, I. Tensor, N. S., 2 (1952), 123-142 · Zbl 0048.40402
[4] KAWAGUCHI, A., On the theory of non-linear connection, II. Convegno mternazionale di Geom. Diff . (1953), 17-32 · Zbl 0058.38303
[5] KAWAGUCHI, A., On the theory of non-linear connection, II. Tensor, N. S., 6(1956), 165-199 · Zbl 0073.39002
[6] MIKAMI, M., On the theory of non-linear direction displacements. Jap. Journ. o Math. 17 (1941), 541-568. · Zbl 0063.03939
[7] NOMIZU, K., Lie group and differential geometry. Math. Soc. of Japan (1956) · Zbl 0071.15402
[8] SASAKI, S., On the dfiferential geometry of tangent bundles of Riemannia manifolds, I. Thoku Math. Journ. 10 (1958), 338-354. · Zbl 0086.15003
[9] SASAKI, S., On the dfiferential geometry of tangent bundles of Riemannia manifolds, II. Thoku Math. Journ. 14 (1962), 146-155. · Zbl 0109.40505
[10] TACHIBANA, S., AND M. OKUMURA, On the almost complex structure of tangen bundles of Riemannian spaces. Thoku Math. Journ. 14 (1962), 156-161. · Zbl 0114.38003
[11] YANO, K., The theory of Lie derivatives and its applications. Amsterdam (1957) · Zbl 0077.15802
[12] YANO, K., AND E. T. DAVIES, On the tangent bundles of Finsler and Riemannia manifolds. Rendiconti del Circ. Mat. di Palermo 12 (1963), 1-18. · Zbl 0119.37801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.