×

Problems on periodicity - functions and semigroups. (English) Zbl 0152.21501


MSC:

54H15 Transformation groups and semigroups (topological aspects)

Keywords:

topology
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Clifford A. H., Preston G. B.: Algebraic theory of semigroups. American Mathematical Society Surveys 7, 1961. · Zbl 0111.03403
[2] Gottschalk W. H.: A note on pointwise nonwandering transformations. Bull. Amer. Math. Soc. 52 (1946), 488-489. · Zbl 0063.01710
[3] Gottschalk W. H., Hedlund G. A.: Topological dynamics. Amer. Math. Soc. Coll. Publs. Vol 7, New York 1955. · Zbl 0067.15204
[4] Hall D. W., Kelley J. L.: Periodic types of transformation. Duke Math. J. 8 (1941), 625-630. · Zbl 0063.01883
[5] Hall D. W., Schweigert G. E.: Properties of invariant sets under pointwise periodic homeomorphisms. Duke Math. J. 4 (1938), 719-724. · Zbl 0020.07905
[6] Hofmann K. H., Wright F. B.: Pointwise periodic groups. Fundam. math. 52 (1963), 103-122. · Zbl 0221.22006
[7] Hudson A. L.: A note on pointwise periodic semigroups. Proc. Amer. Math. Soc. 15 (1964), 700-702. · Zbl 0136.27102
[8] Ljapin E. S.: Semigroups. American Mathematical Society Translations of Mathematical Monographs 3, 1963.
[9] Montgomery D.: Pointwise periodic homeomorphisms. Amer. J. Math. 50 (1937), 118-120. · Zbl 0016.08201
[10] Paalman-de Miranda A. B.: Topological semigroups. Mathematisch Centrum, Amsterdam 1964. · Zbl 0136.26904
[11] Schwarz S.: Contribution to the theory of torsion semigroups. Czechosl. Math. J. 3 (78) (1953), 7-21. · Zbl 0053.34803
[12] Wallace A. D.: A fixed point theorem. Bull. Amer. Math. Soc. 51 (1945), 413-416. · Zbl 0060.40104
[13] Wallace A. D.: A local property of pointwise periodic homeomorphisms. Colloq. Math. 9 (1962), 63-66. · Zbl 0101.15601
[14] Whyburn G. T.: Analytic topology. Amer. Math. Soc. Coll. Pubis. Vol. 28, New York 1942. · Zbl 0061.39301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.