×

Amenable groups and groups with the fixed point property. (English) Zbl 0152.40203


MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Mahlon M. Day, Means for the bounded functions and ergodicity of the bounded representations of semi-groups, Trans. Amer. Math. Soc. 69 (1950), 276 – 291. · Zbl 0039.12301
[2] -, Amenable semi-groups, Illinois J. Math. 1 (1957), 509-544. · Zbl 0078.29402
[3] Mahlon M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585 – 590. · Zbl 0097.31705
[4] Mahlon Marsh Day, Correction to my paper ”Fixed-point theorems for compact convex sets”, Illinois J. Math. 8 (1964), 713.
[5] Jacques Dixmier, Les moyennes invariantes dans les semi-groups et leurs applications, Acta Sci. Math. Szeged 12 (1950), no. Leopoldo Fejér et Frederico Riesz LXX annos natis dedicatus, Pars A, 213 – 227 (French). · Zbl 0037.15501
[6] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958. · Zbl 0084.10402
[7] Erling Følner, Generalization of a theorem of Bogolioùboff to topological abelian groups. With an appendix on Banach mean values in non-abelian groups, Math. Scand. 2 (1954), 5 – 18. · Zbl 0056.02703
[8] Erling Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243 – 254. · Zbl 0067.01203
[9] Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335 – 386. · Zbl 0192.12704
[10] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[11] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer, Berlin, 1963. · Zbl 0115.10603
[12] A. Hulanicki, Groups whose regular representation weakly contains all unitary representations, Studia Math. 24 (1964), 37 – 59. · Zbl 0134.12501
[13] -, Amenable topological groups (to appear).
[14] Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507 – 558. · Zbl 0034.01803
[15] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0121.27504
[16] Shizuo Kakutani and Kunihiko Kodaira, Über das Haarsche Mass in der lokal bikompakten Gruppe, Proc. Imp. Acad. Tokyo 20 (1944), 444 – 450 (German). · Zbl 0060.13501
[17] Takashi Karube, On the local cross-sections in locally compact groups, J. Math. Soc. Japan 10 (1958), 343 – 347. · Zbl 0092.02704
[18] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. · Zbl 0066.16604
[19] Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. · Zbl 0068.01904
[20] J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73-116. · JFM 55.0151.01
[21] Neil W. Rickert, Some properties of locally compact groups, J. Austral. Math. Soc. 7 (1967), 433 – 454. · Zbl 0167.30103
[22] Osamu Takenouchi, Sur une classe de fonctions continues de type positif sur un groupe localement compact, Math. J. Okayama Univ. 4 (1955), 143 – 173 (French). · Zbl 0064.11102
[23] N. Th. Varopoulos, A theorem on the continuity of homomorphisms of locally compact groups, Proc. Cambridge Philos. Soc. 60 (1964), 449 – 463. · Zbl 0121.03704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.