×

zbMATH — the first resource for mathematics

Periodic solutions of some nonlinear differential equations. (English) Zbl 0153.12401

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] {\scCronin, J.} Lyapunov stability and periodic solutions. Bol. Soc. Mat. Mex.{\bf1965}, 22-27.
[2] Hale, J.K, Oscillations in nonlinear systems, (1963), McGraw-Hill New York · Zbl 0115.07401
[3] Malkin, I.G, Some problems in the theory of nonlinear oscillations (in Russian), (1956), (Translated by the United States Atomic Energy Commission, AEC-tr-4439) · Zbl 0070.08703
[4] Cesari, L, Asymptotic behavior and stability problems in ordinary differential equations, (1959), Springer Berlin · Zbl 0082.07602
[5] Cesari, L, Functional analysis and periodic solutions of nonlinear differential equations, Contrib. diff. eqs., 1, (1962) · Zbl 0132.07101
[6] Lefschetz, S, Differential equations: geometric theory, (1963), Wiley (Interscience) New York · Zbl 0107.07101
[7] Levinson, N; Smith, O.K, A general equation for relaxation oscillations, Duke math. J., 9, 382-403, (1942) · Zbl 0061.18908
[8] Ezeilo, J, On the existence of periodic solutions of a certain third-order differential equation, (), 381-389, Part 4 · Zbl 0097.29404
[9] Ezeilo, J, A property of the phase-space trajectories of a third-order nonlinear differential equation, J. London math. soc., 37, 33-41, (1962) · Zbl 0101.30701
[10] Gomory, E.R, Critical points at infinity and forced oscillation, (), 85-126, Princeton · Zbl 0071.08801
[11] Cronin, J, The number of periodic solutions of nonautonomous systems, Duke math. J., 27, 183-194, (1960)
[12] Coleman, C, Critical points and forced oscillations in 3-space, Contrib. diff. eqs., 2, 91-122, (1963)
[13] Levinson, N, Transformation theory of nonlinear differential equations of the second order, Ann. math., 45, 723-737, (1944) · Zbl 0061.18910
[14] {\scLefschetz, S.} The critical case in differential equations. Bol. Soc. Mat. Mex.{\bf1961}, 5-18.
[15] Zubov, V.I, Methods of A. M. Lyapunov and their application, (1957), (Translated by the United States Atomic Energy Commission, AEC-tr-4439) · Zbl 0078.07902
[16] Coddington, E.A; Levinson, N, Theory of ordinary differential equations, (1955), McGraw-Hill New York · Zbl 0042.32602
[17] Minorsky, N, Nonlinear oscillations, (1962), Van Nostrand Princeton · Zbl 0123.06101
[18] Forster, H, Über das verhalten der integralkurven einer gewohnlichen differentialgleichung erster ordnung in der umgebung eines singularen punktes, Math. Z., 43, 271-320, (1937) · JFM 63.0413.01
[19] Nemytskii, V.V; Stepanov, V.V, Qualitative gheory of differential equations, (1960), Princeton University Press Princeton, (translated from Russian) · Zbl 0089.29502
[20] Coleman, C, Asymptotic stability in 3-space, (), 257-268, Princeton · Zbl 0095.28905
[21] Malkin, I.G, Theory of stability of motion, (1952), (Translated by the United States Atomic Energy Commission AEC-tr-3352) · Zbl 0048.32801
[22] {\scWilson, F. W.} The structure of the level surfaces of a Lyapunov function. To appear.
[23] Cronin, J, The point at infinity and periodic solutions, J. diff. eqs., 1, 156-170, (1965) · Zbl 0145.33401
[24] Massera, J.L, Contributions to stability theory, Ann. math., 64, 182-206, (1956) · Zbl 0070.31003
[25] Hahn, W, Theory and application of Liapunov’s direct method, (1963), Prentice-Hall Englewood Cliffs · Zbl 0119.07403
[26] Alexandroff, P; Hopf, H, Topologie, Vol. I, (1935), Berlin
[27] Bendixson, I, Sur LES courbes définies par des équations différentielles, Acta math., 24, 1-88, (1901) · JFM 31.0328.03
[28] Hurewicz, W, Lectures on ordinary differential equations, (1958), The Technology Press and Wiley New York · Zbl 0082.29702
[29] LaSalle, J; Lefschetz, S, Stability by Liapunov’s direct method with applications, (1961), Academic Press New York · Zbl 0098.06102
[30] Massera, J.L, On Liapounoff’s conditions of stability, Ann. math., 50, 705-721, (1949) · Zbl 0038.25003
[31] Poincaré, H, LES Méthodes nouvelles de la Mécanique Céleste, Vol. 1, 1957, (1892), reprinted by Dover Publications, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.