×

Pure submodules. (English) Zbl 0153.34302


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bourbaki, N., Algèbre commutative, Hermann, Paris. · Zbl 0141.03501
[2] Butler, M. C. R. andHorrocks, G., Classes of extensions and resolutions, Phil. Trans. Royal Soc., London, Ser. A,254, 155–222 (1961). · Zbl 0099.25902
[3] Chase, S., Direct products of modules. Trans. Amer. Math. Soc.,97, 457–73 (1960). · Zbl 0100.26602
[4] Cohn, P. M., On the free product of associative rings, Math. Z.,71, 380–98 (1959). · Zbl 0087.26303
[5] Dickson, S. E., A torsion theory for Abelian categories, Trans. Amer. Math. Soc.,121, 223–35 (1966). · Zbl 0138.01801
[6] Fuchs, L., Abelian groups, Budapest, 1958. · Zbl 0091.02704
[7] –, Recent results and problems on abelian groups, Topics in Abelian groups, Scott Foresman, Chicago, 1963.
[8] Hattori, A., A foundation of torsion theory for modules over general rings, Nagoya Math. J.,17, 147–58 (1960). · Zbl 0117.02202
[9] Kaplansky, I., The splitting of modules over integral domains, Arch. Math.,13, 341–3 (1962). · Zbl 0108.26302
[10] Levy, L., Torsion-free and divisible modules over non-integral-domains. Can. J. Math.,15, 132–51 (1963). · Zbl 0108.04001
[11] Maranda, J.-M., On pure subgroups of abelian groups, Arch. Math.,11, 1–13 (1960). · Zbl 0109.01701
[12] –, Injective structures, Trans. Amer. Soc.,110, 98–135 (1964). · Zbl 0121.26601
[13] Matlis, E., Modules with descending chain condition, Trans. Amer. Math. Soc.,97, 495–508 (1960). · Zbl 0094.25203
[14] Mitchell, B., Theory of categories, Academic Press, New York, 1965. · Zbl 0136.00604
[15] Walker, C. L., Relative homological algebra and Abelian groups, Illinois J. Math.,10, 186–209 (1966). · Zbl 0136.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.