Perez, Albert Information-theoretic risk estimates in statistical decision. (English) Zbl 0153.48403 Kybernetika, Praha 3, 1-21 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 9 Documents Keywords:information, communication × Cite Format Result Cite Review PDF Full Text: EuDML References: [1] Perez A.: Information, \(\varepsilon\)-Sufficiency and Data Reduction Problems. Kybernetika 1 (1965), 4, 297-323. · Zbl 0156.40603 [2] Perez A.: Information and \(\varepsilon\)-Sufficiency. Paper No. 41 presented at the 35th Session of the International Statistical Institute, Beograd, 1965. [3] Perez A.: Information Theory Methods in Reducing Complex Decision Problems. To appear in: Transactions of the Fourth Prague Conference on Information Theory, Statistical Decision Problems and Random Processes (1965). [4] Csiszár I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publications of the Mathematical Institute of the Hungarian Academy of Sciences VIII (1963), Series A, Fasc. 1-2, 85-108. · Zbl 0124.08703 [5] Perez A.: Extensions of the Shannon-McMillan’s Limit Theorem to more general Stochastic Processes. Transactions of the Third Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (1962), Prague 1964, 545-574. [6] Perez A.: Notions généralisées d’incertitude, d’entropie et d’information du point de vue de la théorie des partingales. Transactions of the First Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (1956), Prague 1957, 183 - 208. [7] Rényi A.: On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Probability and Statistics, I, Berkeley, 1960, 547-561. [8] Kovalevskij V. A.: The problem of pattern recognition from the point of view of mathematical statistics. Reading Automata, Kiev 1965, 8-37 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.