×

Vector spaces and construction of finite projective planes. (English) Zbl 0153.49801


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. A. Albert, On nonassociative division algebras. Trans. Amer. Math. Soc.72, 296–309 (1952). · Zbl 0046.03601
[2] A. A. Albert, Finite noncommutative division algebras. Proc. Amer. Math. Soc.9, 928–932 (1958). · Zbl 0092.03501
[3] A. A. Albert, Finite division algebras and finite planes. Proc. Symp. Appl. Math.10, 53–70 (1960). · Zbl 0096.15003
[4] A. A. Albert, Generalized twisted fields. Pacific J. Math.11, 1–8 (1961). · Zbl 0154.27203
[5] A. A.Albert, The finite planes of Ostrom. (Unpublished). · Zbl 0157.27003
[6] J. André, Über nicht-desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z.60, 156–186 (1954). · Zbl 0056.38503
[7] J. André, Projektive Ebenen über Fastkörpern. Math. Z.62, 137–160 (1955). · Zbl 0064.14402
[8] A. Barlotti, Le possibili configurazioni dei sistemi delle coppie puncto-retta (A, a) per cui un piano grafica risulta (A, a) transitivo. Boll. Un. Mat. Ital.12, 212–226 (1957). · Zbl 0077.13802
[9] G.Bjork, On finite nets associated with vector spaces. Ph. D. Thesis, Washington State University 1966.
[10] R. H. Bruck, Finite nets, II. Uniqueness and Embedding. Pacific J. Math.13, 421–457 (1963). · Zbl 0124.00903
[11] R. H. Bruck andR. C. Bose, The construction of translation planes from projective spaces. J. Algebra1, 85–102 (1964). · Zbl 0117.37402
[12] R. H. Bruck and R. C. Bose, Linear representations of projective planes in projective spaces. J. Algebra4, 117–172 (1966). · Zbl 0141.36801
[13] L. Carlitz, A theorem on permutations in a finite field. Proc. Amer. Math. Soc.11, 456–459 (1960). · Zbl 0095.03003
[14] P.Dembowski and T. G.Ostrom, Planes of ordern with collineation groups of ordern2. Math. Z. (to appear). · Zbl 0163.42402
[15] L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc.7, 370–390 (1906). · JFM 37.0111.06
[16] L. E. Dickson, Linear algebras with associativity not assumed. Duke J. Math.1, 113–125 (1935). · Zbl 0012.14801
[17] D. A. Foulser, A generalization of André systems. Math. Z.100, 421–457 (1967). · Zbl 0152.18903
[18] D. A. Foulser, Solvable flag transitive affine groups. Math. Z.86, 191–204 (1964). · Zbl 0144.01803
[19] R.Fryxell, Sequences of planes constructed from nearfield planes of square order. Ph. D. Thesis, Washington State University 1964.
[20] M. Hall, Projective planes. Trans. Amer. Math. Soc.54, 229–277 (1943). · Zbl 0060.32209
[21] M. Hall, Correction to ”Projective Planes”. Trans. Amer. Math. Soc.65, 473–474 (1949).
[22] M.Hall, The theory of groups. New York 1959. · Zbl 0084.02202
[23] D. R. Hughes, A class of non-Desarguesian projective planes. Can. J. Math.9, 378–388 (1957). · Zbl 0082.35701
[24] D. R. Hughes andE. Kleinfeld, Semi-nuclear extensions of Galois fields. Amer. J. Math.82, 389–392 (1960). · Zbl 0097.02201
[25] D. E. Knuth, A class of projective planes. Trans. Amer. Math. Soc.115, 541–549 (1965). · Zbl 0128.25701
[26] D. E. Knuth, Finite semifields and projective planes. J. Algebra2, 182–217 (1965). · Zbl 0128.25604
[27] H. Lenz, Kleiner Desarguesscher Satz und Dualität in projektiven Ebenen. J.-Ber. Deutsch. Math.-Verein.57, 20–31 (1954). · Zbl 0055.13801
[28] H. Lüneburg, Über projektive Ebenen, in denen jede Fahne von einer nicht-trivialen Elation invariant gelassen wird. Abh. Math. Sem. Univ. Hamburg29, 37–76 (1965). · Zbl 0147.19704
[29] D. L. Morgan andT. G. Ostrom, Coordinate systems of some semi-translation planes. Trans. Amer. Math. Soc.111, 19–32 (1964). · Zbl 0117.37401
[30] T. G. Ostrom, Translation planes and configurations in Desarguesian planes. Arch. Math.11, 457–464 (1960). · Zbl 0100.15601
[31] T. G. Ostrom, A class of non-Desarguesian affine planes. Trans. Amer. Math. Soc.104, 483–487 (1962). · Zbl 0135.39301
[32] T. G. Ostrom, Semi-translation planes. Trans. Amer. Math. Soc.111, 1–18 (1964). · Zbl 0117.37303
[33] T. G. Ostrom, Nets with critical deficiency. Pacific J. Math.14, 1381–1387 (1964). · Zbl 0135.39302
[34] T. G. Ostrom, Finite planes with a single (p, L) transitivity. Arch. Math.15, 378–384 (1964). · Zbl 0129.12502
[35] T. G. Ostrom, Correction to ”Finite planes with a single (p, L) transitivity”. Arch. Math.17, 480 (1966). · Zbl 0149.17602
[36] T. G. Ostrom, Derivable nets. Can. Math. Bull.8, 601–613 (1965). · Zbl 0137.40203
[37] T. G. Ostrom, Collineation groups of semi-translation planes. Pacific J. Math.15, 273–279 (1965). · Zbl 0127.11402
[38] T. G. Ostrom, A characterization of the Hughes planes. Can. J. Math.17, 916–922 (1965). · Zbl 0188.52601
[39] T. G. Ostrom, Replaceable nets, net collineations, and net extensions. Can. J. Math.18, 666–672 (1966). · Zbl 0163.42302
[40] T. G. Ostrom, The dual Lüneburg planes. Math. Z.92, 201–209 (1966). · Zbl 0178.23403
[41] G. Panella, Una classe di sistemi cartesiani. Atti Accad. Naz. Lincei, Rend. Cl. fis., mat e nat.8, 480–485 (1965).
[42] G.Pickert, Projektive Ebenen. Berlin 1955.
[43] G. Pickert, Die cartesischen Gruppen der Ostrom-Rosati-Ebenen. Abh. Math. Sem. Univ. Hamburg30, 106–117 (1967). · Zbl 0166.16101
[44] W. A. Pierce, Moulton planes. Can. J. Math.13, 427–436 (1961). · Zbl 0103.13404
[45] L. A. Rosati, I gruppi di collineazioni dei piani di Hughes. Boll. Un. Mat. Ital.13, 505–513 (1958).
[46] L. A. Rosati, Su unu nuova classe di piani grafici. Ric. Mat.13, 39–55 (1964). · Zbl 0124.12805
[47] R. Sandler, Autotopism groups of some finite non-associative algebras. Amer. J. Math.84, 239–264 (1962). · Zbl 0156.26904
[48] J. Tits, Ovoïdes et groupes de Suzuki. Arch. Math.13, 187–198 (1962). · Zbl 0109.39402
[49] G. Zappa, Sui gruppi di collineazioni dei piani di Hughes. Boll. Un. Mat. Ital.12, 507–516 (1957).
[50] H. Zassenhaus, Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg11, 187–220 (1936). · Zbl 0011.10302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.