Ariman, T. On the stresses around a circular hole in micropolar elasticity. (English) Zbl 0153.55703 Acta Mech. 4, 216-229 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 8 Documents Keywords:mechanics of solids PDF BibTeX XML Cite \textit{T. Ariman}, Acta Mech. 4, 216--229 (1967; Zbl 0153.55703) Full Text: DOI OpenURL References: [1] Eringen, A. C. andE. S. Suhubi: Nonlinear Theory of Simple Microelastic Solids I, Int. J. Engng. Sci.2, 189 (1964). · Zbl 0138.21202 [2] Suhubi, E. S. andA. C. Eringen: Nonlinear Theory of Simple Microelastic Solids II, Int. J. Engng. Sci.2, 389 (1964). · Zbl 0138.21202 [3] Eringen, A. C.: Mechanics of Micromorphic Materials. Proc. XI, Int. Congr. of Applied Mech. Munich, Germany 131 (1966). [4] Eringen, A. C.: Mechanics of Micropolar Continua. Scheduled for publication in the Reiner Anniversary Volume. [5] Eringen, A. C.: Linear Theory of Micropolar Elasticity. J. Math. and Mech.15, 909 (1966). · Zbl 0145.21302 [6] Neuber, H.: On the General Solution of Linear Elastic Problems in Isotropic and Anisotropic Cosserat Continua. Proc. XI Int. Congr. of Applied Mech. Munich, Germany 153 (1966) · Zbl 0151.36602 [7] Neuber, H.: ?ber Probleme der Spannungskonzentration im Cosserat-K?rper. Acta Mechanica2, 48 (1966). · Zbl 0161.21804 [8] Bickley, W. G.: The Distribution of Stress Around a Circular Hole in a Plate. Philos. Trans. Roy. Soc. London.227, 383 (1928). · JFM 54.0902.05 [9] Sandru, N.: On Some Problems of the Linear Theory of Asymmetric Elasticity. Int. J. Engng. Sci.4, 81 (1966). [10] Cohen, H.: Dislocations in Couple-Stress Elasticity. J. Math. Phys.45, 35 (1966). [11] Kaloni, P. N. andT. Ariman: Stress Concentrations in Micropolar Elasticity. ZAMP17, 136 (1967). [12] Ariman, T.: On Some Problems in Bending of Micropolar Plates. To appear. · Zbl 0162.56305 [13] Schijve, J.: Note on Couple Stresses. J. Mech. Phys. Solids14, 113 (1966). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.