×

zbMATH — the first resource for mathematics

Huygens’ principle for the non-self-adjoint scalar wave equation on Petrov type III space-times. (English) Zbl 0956.83005
Summary: We prove that if the non-self-adjoint scalar wave equation satisfies Huygens’ principle on Petrov type III space-times, then it is equivalent to the conformally invariant scalar wave equation.

MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
35Q75 PDEs in connection with relativity and gravitational theory
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics
Software:
NP; NPspinor
PDF BibTeX XML Cite
Full Text: Numdam EuDML arXiv
References:
[1] W. Anderson , Contributions to the study of Huygens’ Principle for non-self-adjoint scalar wave equations on curved space-time , M. Math. Thesis , University of Waterloo , 1991 .
[2] W.G. Anderson and R.G. Mclenaghan , On the validity of Huygens’ principle for second order partial differential equations with four independent variables. II. - A sixth necessary condition , Ann. Inst. Henri Poincaré , Phys. Théor. , 60 , 1994 , pp. 373 - 432 . Numdam | MR 1288586 | Zbl 0806.35104 · Zbl 0806.35104 · numdam:AIHPA_1994__60_4_373_0 · eudml:76640
[3] W.G. Anderson , R.G. Mclenaghan and T.F. Walton , An explicit determination of the Non-self-adjoint wave equations that satisfy Huygens’ principle on Petrov type III background space-times , Zeitschrift für Analysis und ihre Anwendungen - Journal for Analysis and its Applications , 16 , 1996 , pp. 37 - 58 . MR 1453390 | Zbl 0885.35062 · Zbl 0885.35062 · doi:10.4171/ZAA/748
[4] S.R. Czapor and R.G. Mclenaghan , NP: A Maple package for performing calculations in the Newman-Penrose formalism . Gen. Rel. Gravit. , 19 , 1987 , pp. 623 - 635 . MR 892637 | Zbl 0613.53033 · Zbl 0613.53033 · doi:10.1007/BF00762558
[5] S.R. Czapor , Gröbner Basis Methods for Solving Algebraic Equations, Research Report CS-89-51 , 1989 , Department of Computer Science, University of Waterloo , Ontario , Canada . · Zbl 1209.13002
[6] S.R. Czapor , R.G. Mclenaghan and J. Carminati , The automatic conversion of spinor equations to dyad form in MAPLE , Gen. Rel. Gravit. , 24 , 1992 , pp. 911 - 928 . MR 1180241 | Zbl 0758.53047 · Zbl 0758.53047 · doi:10.1007/BF00759122
[7] P. Günther , Zur Gültigkeit des huygensschen Prinzips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus , S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur K. , 100 , 1952 , pp. 1 - 43 . MR 50136 | Zbl 0046.32201 · Zbl 0046.32201
[8] R.G. Mclenaghan , On the validity of Huygens’ principle for second order partial differential equations with four independent variables . Part I: Derivation of necessary conditions , Ann. Inst. Henri Poincaré , A 20 , 1974 , pp. 153 - 188 . Numdam | MR 361452 | Zbl 0287.35058 · Zbl 0287.35058 · numdam:AIHPA_1974__20_2_153_0 · eudml:75801
[9] R.G. Mclenaghan , Huygens’ principle , Ann. Inst. Henri Poincaré 27 , 1982 , pp. 211 - 236 . Numdam | MR 694586 | Zbl 0528.35057 · Zbl 0528.35057 · numdam:AIHPA_1982__37_3_211_0 · eudml:76172
[10] R.G. Mclenaghan and T.F. Walton , An explicit determination of the non-self-adjoint wave equations on a curved space-time that satisfies Huygens’ principle. Part I: Petrov type N background space-times , Ann. Inst. Henri Poincaré , Phys. Théor. , 48 , 1988 , pp. 267 - 280 . Numdam | MR 950268 | Zbl 0645.53047 · Zbl 0645.53047 · numdam:AIHPA_1988__48_3_267_0 · eudml:76400
[11] R.G. Mclenaghan and T.G.C. Williams , An explicit determination of the Petrov type D space-times on which Weyl’s neutrino equation and Maxwell’s equations satisfiy Huygens’ principle , Ann. Inst. Henri Poincaré , Phys. Théor. , 53 , 1990 , pp. 217 - 223 . Numdam | MR 1079778 | Zbl 0709.53053 · Zbl 0709.53053 · numdam:AIHPA_1990__53_2_217_0 · eudml:76501
[12] R.G. Mclenaghan and F.D. Sasse , Nonexistence of Petrov type III space-times on which Weyl’s neutrino equation or Maxwell’s equations satisfy Huygens’ principle , Ann. Inst. Henri Poincaré , Phys. Théor. , 65 , 1996 , pp. 253 - 271 . Numdam | MR 1420704 | Zbl 0869.53061 · Zbl 0869.53061 · numdam:AIHPA_1996__65_3_253_0 · eudml:76742
[13] E.T. Newman and R. Penrose , An approach to gravitational radiation by a method of spin coefficients , J. Math. Phys. , 3 , 1962 , pp. 566 - 578 . MR 141500 | Zbl 0108.40905 · Zbl 0108.40905 · doi:10.1063/1.1724257
[14] R. Penrose , A spinor approach to general relativity , Ann. Physics , 10 , 1960 , pp. 171 - 201 . MR 115765 | Zbl 0091.21404 · Zbl 0091.21404 · doi:10.1016/0003-4916(60)90021-X
[15] F.A.E. Pirani , in Lectures on General Relativity , S. Deser and W. Ford, ed., Prentice-Hall , New Jersey , 1964 .
[16] F.D. Sasse , Huygens’ Principle for Relativistic Wave Equations on Petrov type III Space-Times , Ph.D. Thesis , University of Waterloo , 1997 . · Zbl 0885.53078
[17] T.F. Walton , The validity of Huygens’ Principle for the non-self-adjoint scalar wave equations on curved space-time , M. Math. Thesis , University of Waterloo , 1988 . · Zbl 0645.53047
[18] V. Wünsch , Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen , Math. Nachr. , 47 , 1970 , pp. 131 - 154 . MR 298221 | Zbl 0211.40803 · Zbl 0211.40803 · doi:10.1002/mana.19700470116
[19] V. Wünsch , Huygens’ principle on Petrov type D space-times , Ann. Physik , 46 , 1989 , pp. 593 - 597 . MR 1051239 | Zbl 0697.53027 · Zbl 0697.53027 · doi:10.1002/andp.19895010806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.