×

zbMATH — the first resource for mathematics

Integrals over a product variety and Fubini theorems. (English) Zbl 0154.05302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Cesari,Surface Area, Princeton University Press (1956).
[2] L. Cesari,Quasi additive set function and the concept of integrals over a variety, Trans. Amer. Math. Soc. 102 (1962) pp. 94–113. · Zbl 0115.26902
[3] L. Cesari,Extension problem for quasi additive set functions and the Radon-Nikodym derivatives, Trans. Amer. Math. Soc. 102 (1962) pp. 114–146. · Zbl 0115.27001
[4] L. Cesari,L’area di Lebesgue come una misura, Rend. Mat. e Appl., Serie V, vol. XIV (1955) pp. 655–673.
[5] L. Cesari and L. H. Turner,Surface integral and Radon-Nikodym derivatives, Rend. Circ. Mat. Palermo 7 (1958) pp. 143–154. · Zbl 0087.27103 · doi:10.1007/BF02854524
[6] S. Eilenberg and N. Steenrod,Foundations of Algebraic Topology, Princeton University Press (1952). · Zbl 0047.41402
[7] H. Federer,Essential multiplicity and Lebesgue area, Proc. Nat. Acad. Sci. USA 34 (1948) pp. 411–416. · Zbl 0032.14903 · doi:10.1073/pnas.34.12.611
[8] P. R. Halmos,Measure Theory, Van Nostrand (1950).
[9] J. L. Kelley,General Topology, Van Nostrand (1955).
[10] T. Nishiura,The Geöcze k-area and a cylindrical property, Proc. Amer. Math. Soc. 12 (1961) pp. 795–800. · Zbl 0113.04202
[11] T. Nishiura,The Geöcze k-area and flat mappings, Rend. Circ. Mat. Palermo 11 (1962) pp. 105–125. · Zbl 0111.05702 · doi:10.1007/BF02849429
[12] T. Radó and P. V. Reichelderfer,Continuous Transformations in Analysis, Berlin, Springer (1955). · Zbl 0067.03506
[13] L. H. Turner,Measures induced on a \(\sigma\)-algebra by a surface, Duke Math. J. 26 (1959) pp. 501–509. · Zbl 0127.28105 · doi:10.1215/S0012-7094-59-02647-X
[14] G. T. Whyburn,Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28 (1942).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.