×

On the best stabilizing control under a given class of perturbations. (English) Zbl 0154.10005


PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Ważewski T.: Systèmes de commande et équations au contingent. Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys. 9 (1961), 151-155. · Zbl 0098.28402
[2] Ważewski T.: Sur une condition d’existence des fonctions implicites mesurables. Ibid. 9 (1961), 861-863. · Zbl 0101.04302
[3] Ważewski T.: Sur une condition équivalente à l’équation au contingent. Ibid. 9 (1961), 865-867. · Zbl 0101.06001
[4] Филиппов А. Ф.: Дифференциальные уравнения с разрывной правой частью. Математический сборник 51 (1960), 99-128. · Zbl 1004.90500 · doi:10.1287/mnsc.6.4.423
[5] Барбашин Е.А., Алимов Ю. И.: К теории релейных дифференциальных уравнений. Известия ВУЗ, Математика, 1962, 3-13. · Zbl 1005.68507 · doi:10.1287/mnsc.8.3.344
[6] Zaremba S. Ch.: Sur les équations au paratingent. Bull. des Sci. Math. 60 (1936), 139-160. · Zbl 0014.15702
[7] Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф.: Математическая теория отпимальных процессов. Москва 1962. · Zbl 1005.68507 · doi:10.1287/mnsc.8.3.344
[8] La Salle J. P.: Stability and Control. RIAS Technical Report 61 - 17 (1961).
[9] Karlin S.: Mathematical Methods and Theory in Games, Programming and Economics II. Reading-London, 1959.
[10] Coddington E. A., Levinson N.: Theory of Ordinary Differential Equations. New York, 1955. · Zbl 0064.33002
[11] Dunford N., Schwartz J. T.: Linear Operators I. New York-London, 1958. · Zbl 0084.10402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.