×

Structure in simplexes. (English) Zbl 0154.14201


MSC:

46-XX Functional analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alesen, E., On the geometry of Choquet simplexes.Math. Scand., 15 (1964), 97–110. · Zbl 0189.42802
[2] Bauer, H., Silovscher Rand und Dirichletsches Problem.Ann. Inst. Fourier (Grenoble), 11 (1961), 89–136. · Zbl 0098.06902
[3] Bonsall, E. F., Extreme maximal ideals of a partially ordered vector space.Proc. Amer. Math. Soc., 7 (1956), 831–837. · Zbl 0074.32103
[4] Bourbaki, N.,Intégration. Actualités Scientifiques et Industrielles, no. 1175, Paris, 1952.
[5] Bourbaki, N.,Espaces vectoriels topologiques. Actualités Scientifiques et Industrielles, no. 1229, Paris, 1955. · Zbl 0066.35301
[6] Choquet, G. &Meyer, P. A., Existence et unicité des représentations intégrales dans les convexes compacts quelconques.Ann. Inst. Fourier (Grenoble), 13 (1963), 139–154. · Zbl 0122.34602
[7] Day, M.,Normed linear spaces. Academic Press, New York, 1962. · Zbl 0100.10802
[8] Edwarus, D. A., Séparation des fonctions réelles définies sur un simplexe de Choquet. C. R. Acad. Sci. Paris, 261 (1965), 2798–2800.
[9] Effros, E., Order ideals in a C*-algebra and its dual.Duke Math. J., 30 (1963), 391–412. · Zbl 0117.09703
[10] Ellis, A. J., Perfect order ideals.J. London Math. Soc., 40 (1965), 288–294. · Zbl 0138.37504
[11] Feldman, J.,Representations of invariant measures. (1963) (dittoed notes, 17 pp.).
[12] Jacorson, N.,Structure of rings. Amer. Math. Soc. Colloq. Publ., no. 37, Providence, 1956.
[13] Kadison, R. V.,A representation theory for commutative topological algebras. Memoirs Amer. Math. Soc. 7 (1951). · Zbl 0042.34801
[14] –, Unitary invariants for representations of operator algebras.Ann. of Math., 66 (1957), 304–379. · Zbl 0084.10705
[15] –, Irreducible operator algebras.Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 273–276. · Zbl 0078.11502
[16] –, Transformations of states in operator theory and dynamics.Topology, 3, suppl. 2 (1964), 177–198. · Zbl 0129.08705
[17] Kakutani, S., Concrete representation of abstract (L)-spaces and the mean ergodic theorem.Ann. of Math., 42 (1941), 523–537. · Zbl 0027.11102
[18] –, Concrete representation of abstract (M)-spaces.Ann. of Math., 42 (1941), 994–1024. · Zbl 0060.26604
[19] Kelley, Namioka, and co-authors,Linear Topological Spaces. van Nostrand, Princeton, N.J., 1963. · Zbl 0318.46001
[20] Krein, M., Sur la décomposition minimale d’une fonctionelle linéarire en composantes positives.Comptes Rendus (Doklady) de l’Acad. Sci. de l’URSS, 28 (1940), 18–24. · Zbl 0024.12203
[21] Lindenstrauss, J.,Extension of compact operators. Memoirs Amer. Math. Soc. 48 (1964). · Zbl 0141.12001
[22] Loomis, L.,An introduction to abstract harmonic analysis. van Nostrand, New York, 1953. · Zbl 0052.11701
[23] Phelps, R.,Lectures on Choquet’s theorem. van Nostrand, Princeton, N.J., 1966. · Zbl 0135.36203
[24] Riesz, F., Sur quelques notions fondamentales dans la théorie générale des opérations linéaires.Ann. of Math., 41 (1940), 174–206. · Zbl 0022.31802
[25] Semadeni, Z., Free compact sets.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., 13 (1965), 141–146. · Zbl 0135.16104
[26] Thoma, E., Über unitäre Darstellungen abzählbarer, diskreter Gruppen.Math. Ann. 153 (1964), 111–138. · Zbl 0136.11603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.