×

zbMATH — the first resource for mathematics

Spectral and scattering theory for Maxwell’s equations in an exterior domain. (English) Zbl 0155.43502

MSC:
35Q61 Maxwell equations
35P05 General topics in linear spectral theory for PDEs
35P25 Scattering theory for PDEs
78A25 Electromagnetic theory, general
78A45 Diffraction, scattering
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bers, L., F. John, & M. Schechter, Partial Differential Equations. New York-London-Sidney: Interscience 1964. · Zbl 0126.00207
[2] Deny, Jacques, & Jacques Louis Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5, 305–370 (1953–54). · Zbl 0065.09903 · doi:10.5802/aif.55
[3] Friedrichs, Kurt O., Differential forms on Riemannian manifolds. Comm. Pur. Appl. Math. 8, 551–590 (1955). · Zbl 0066.07504 · doi:10.1002/cpa.3160080408
[4] Lax, Peter D., & Ralph S. Phillips, Scattering Theory. Academic Press 1967.
[5] Lax, Peter D., & Ralph S. Phillips, Scattering Theory. Bull. Amer. Math. Soc. 70, No. 1, 130–142 (1964). · Zbl 0117.09104 · doi:10.1090/S0002-9904-1964-11051-X
[6] Lax Peter D., & Ralph S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13, 427–455 (1960). · Zbl 0094.07502 · doi:10.1002/cpa.3160130307
[7] Lax, Peter D., Ralph S. Phillips, & Cathleen S. Morawetz, Exponential decay of solutions of the wave equation in the exterior of a star shaped obstacle. Comm. Pure Appl. Math. 16, 477–486 (1963). · Zbl 0161.08001 · doi:10.1002/cpa.3160160407
[8] Miranker, Willard L., Uniqueness and representation theorem · Zbl 1032.91529
[9] Schmidt, Georg, Appendix to [4] above.
[10] Schmidt, Georg, Spectral and scattering theory for Maxwell’s equations in an exterior domain. MRC Technical Summary Report No. 770. Mathematics Research Center, U.S.Army; Madison, Wis. (1967).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.