Stroock, D.; Zegarliński, B. On the ergodic properties of Glauber dynamics. (English) Zbl 1081.60562 J. Stat. Phys. 81, No. 5-6, 1007-1019 (1995). Summary: We show that if there is an infinite volume Gibbs measure which satisfies a logarithmic Sobolev inequality with local coefficients of moderate growth, then the corresponding stochastic dynamics decays to equilibrium exponentially fast in the uniform norm. Cited in 9 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics Keywords:logarithmic Sobolev inequality PDFBibTeX XMLCite \textit{D. Stroock} and \textit{B. Zegarliński}, J. Stat. Phys. 81, No. 5--6, 1007--1019 (1995; Zbl 1081.60562) Full Text: DOI References: [1] M. Aizenman and R. A. Holley, Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin-Shlosman regime, inPercolation Theory and Ergodic Theory of Infinite Particle Systems, H. Kesten, ed. (Springer-Verlag, 1987), pp. 1–11. · Zbl 0621.60118 [2] J.-D. Deuschel and D. W. Stroock,Large Deviations (Academic Press, 1989). [3] R. L. Dobrushin and S. B. Shlosman, Constructive criterion for the uniqueness of Gibbs field, inStatistical Physics and Dynamical Systems, Rigorous Results, Fritz, Jaffe, and Szasz, eds. (Birkhäuser, 1985), pp. 347–370. · Zbl 0569.46042 [4] R. L. Dobrushin and S. B. Shlosman, Completely analytical Gibbs fields, inStatistical Physics and Dynamical Systems, Rigorous Results, Fritz, Jaffe, and Szasz, eds. (Birkhäuser, 1985), pp. 371–403. · Zbl 0569.46043 [5] R. L. Dobrushin and S. B. Shlosman, Completely analytical interactions: Constructive description,J. Stat. Phys. 46:983–1014 (1987). · Zbl 0683.60080 · doi:10.1007/BF01011153 [6] R. Holley, Possible rates of convergence in finite range, attractive spin systems,Contemp. Math. 41:215–234 (1985). · Zbl 0577.60099 [7] R. Holley and D. Stroock, Logarithmic Sobolev inequalities and stochastic Ising models,J. Stat. Phys. 46:1159–1194 (1987). · Zbl 0682.60109 · doi:10.1007/BF01011161 [8] E. Laroche, Hypercontractivité pour des systèmes de spin de portée infinie,Prob. Theory Related Fields,101:89–132 (1995). · Zbl 0820.60082 · doi:10.1007/BF01192197 [9] Sheng Lin Lu and Horng-Tzer Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics,Commun. Math. Phys. 156:399–433 (1993). · Zbl 0779.60078 · doi:10.1007/BF02098489 [10] F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region: I. The attractive case/II. The general case,Commun. Math. Phys. 161:447–486/487–514 (1994). · Zbl 0793.60110 · doi:10.1007/BF02101929 [11] F. Martinelli and E. Olivier, Finite volume mixing conditions for lattice spin systems and exponential approach to equilibrium of Glauber dynamics, Preprint (1994). [12] F. Martinelli, E. Olivieri, and R. H. Schonmann, For 2-D lattice spin systems weak mixing implies strong mixing,Commun. Math. Phys. 165:33–47 (1994). · Zbl 0811.60097 · doi:10.1007/BF02099735 [13] S. B. Shlosman and R. H. Schonmann, Complete analyticity for 2D Ising completed, inCommun. Math. Phys., to appear. · Zbl 0821.60097 [14] D. W. Stroock and B. Zegarlinski, The logarithmic Sobolev inequality for continuous spin systems on a lattice,J. Funct. Anal. 104:299–326 (1992). · Zbl 0794.46025 · doi:10.1016/0022-1236(92)90003-2 [15] D. W. Stroock and B. Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition,Commun. Math. Phys. 144:303–323 (1992). · Zbl 0745.60104 · doi:10.1007/BF02101094 [16] D. W. Stroock and B. Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on a lattice,Commun. Math. Phys. 149:175–193 (1992). · Zbl 0758.60070 · doi:10.1007/BF02096629 [17] B. Zegarlinski, Recent progress in hypercontractive semigroups, inProceedings of Ascona Conference (1993). · Zbl 0846.60094 [18] B. Zegarlinski, Strong decay to equilibrium in one dimensional random spin systems,J. Stat. Phys. 77:717–732 (1994). · Zbl 0839.60102 · doi:10.1007/BF02179458 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.