Hörmander, Lars Hypoelliptic second order differential equations. (English) Zbl 0156.10701 Acta Math. 119, 147-171 (1967). Reviewer: Yu. V. Egorov Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 16 ReviewsCited in 993 Documents MSC: 35H10 Hypoelliptic equations Keywords:second order hypoelliptic equations PDF BibTeX XML Cite \textit{L. Hörmander}, Acta Math. 119, 147--171 (1967; Zbl 0156.10701) Full Text: DOI OpenURL References: [1] Hochschild, G.,The structure of Lie groups. Holden–Day Inc., San Francisco, London, Amsterdam, 1965. · Zbl 0131.02702 [2] Hörmander, L., Pseudo-differential operators and hypoelliptic equations. To appear inAmer. Math. Soc. Proc. Symp. Pure Math., 10 (1967). [3] ,Linear partial differential operators. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. · Zbl 0108.09301 [4] Il’in, A. M., On a class of ultraparabolic equations. (Russian.)Doklady Akad. Nauk SSSR, 159 (1964), 1214–1217. Also inSoviet Math. Dokl., 5 (1964), 1673–1676. [5] Kohn, J. J., Boundaries of complex manifolds.Proc. Conf. Complex Analysis (Minneapolis 1964) 81–94. Springer Verlag, Berlin, 1965. [6] Kohn, J. J. &Nirenberg, L., Non coercive boundary value problems.Comm. Pure Appl. Math. 18 (1965), 443–492. · Zbl 0125.33302 [7] Kohn, J. J. & Nirenberg, L., Degenerate elliptic-parabolic equations of second order. To appear inComm. Pure Appl. Math. · Zbl 0153.14503 [8] Kolmogorov, A. N., Zufällige Bewegungen,Ann. of Math. (2), 35 (1934), 116–117. · Zbl 0008.39906 [9] Nirenberg, L. &Trèves, F., Solvability of a first order linear partial differential equation.Comm. Pure Appl. Math., 16 (1963), 331–351. · Zbl 0117.06104 [10] Olejnik, O. A., Linear second order equations with non-negative characteristic form. (Russian.)Mat. Sb., 69 (1966), 111–140. · Zbl 0146.34203 [11] Weber, M., The fundamental solution of a degenerate partial differential equation of parabolic type.Trans. Amer. Math. Soc., 71 (1951), 24–37. · Zbl 0043.09901 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.