×

zbMATH — the first resource for mathematics

Ordered cycle lengths in a random permutation. (English) Zbl 0156.18705

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] John Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. · Zbl 0078.00805
[2] W. Gontcharoff, Sur la distribution des cycles dans les permutations, C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942), 267 – 269.
[3] -, Du domaine d’analyse combinatoire, Bull. Acad. Sci. USSR Ser. Mat. (Izv. Akad. Nauk SSSR) 8 (1944), 3-48; Amer. Math. Soc. Transl. (2) 19 (1962), 1-46.
[4] S. W. Golomb, L. R. Welch and R. M. Goldstein, Cycles from nonlinear shift registers Progress Rep. No. 20-389, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 1959.
[5] S. W. Golomb, Random permutations, Bull. Amer. Math. Soc. 70 (1964), 747.
[6] E. T. Whittaker and G. N. Watson, Modern analysis, Cambridge Univ. Press, New York, 1948. · Zbl 0108.26903
[7] N. G. de Bruijn, Asymptotic methods in analysis, North-Holland, Amsterdam, 1961. · Zbl 0098.26404
[8] Gustav Doetsch, Theorie und Anwendung der Laplace-Transformation, Dover Publication, N. Y., 1943 (German). · Zbl 0060.24709
[9] Mark Kac, Probability and related topics in physical sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo., vol. 1957, Interscience Publishers, London-New York, 1959. · Zbl 0087.33003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.