×

zbMATH — the first resource for mathematics

\(c_ p\). (English) Zbl 0156.37902

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. A. Clarkson.Uniformly convex spaces, Trans. Amer. Math. Soc.40 (1936), 396–414. · JFM 62.0460.04 · doi:10.1090/S0002-9947-1936-1501880-4
[2] J. Dixmier,Formes linéaires sur un anneau d’operateurs, Bull. Soc. Math. France81 (1953) 9–39. · Zbl 0050.11501
[3] N. Dunford,Spectral Operators, Pacific J. Math.4 (1954), 321–354. · Zbl 0056.34601
[4] N. Dunford and J. T. Schwartz.Linear Operators, Part II. Interscience, New York (1963). · Zbl 0128.34803
[5] I. C. Gohberg and M. G. Krein.Introduction to the Theory of Linear Non-Self-Adjoint Operators in Hilbert Space, Moscow (1965). (In Russian).
[6] A. Grothendieck,Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc.16 (1955).
[7] A. Horn,On the singular values of a product of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A.36 (1950), 373–375. · Zbl 0038.07201 · doi:10.1073/pnas.36.7.374
[8] S. Kakutani,An example concerning uniform boundedness of spectral measures, Pacific J. Math.4 (1954), 363–372. · Zbl 0056.34702
[9] W. Littman, C. McCarthy, and N. Rivière,L p Multiplier theorems of Marcinkiewicz type, To appear.
[10] C. McCarthy,Commuting Boolean algebras of projections II, Proc. Amer. Math. Soc.15 (1964), 781–787. · Zbl 0127.33003
[11] J. von Neumann.Some matrix-inequalities and metrization of matric-space, Tomsk Univ. Rev.1 (1937), 286–300. · JFM 63.0037.03
[12] B. J. Pettis.A proof that every uniformly convex space is reflexive, Duke Math. J.5 (1939), 249–253 · Zbl 0021.32601 · doi:10.1215/S0012-7094-39-00522-3
[13] R. Schatten,A theory of cross-spaces, Ann. of Math. Studies, No. 26, Princeton University Press, Princeton, 1950. · Zbl 0041.43502
[14] –,Norm ideals of completely continuous operators, Ergebnisse der Math, Neue Folge,27, Springer Verlag, 1960. · Zbl 0090.09402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.