×

zbMATH — the first resource for mathematics

Algebraic functions and analogue of the geometry of numbers: The Riemann- Roch theorem. (English) Zbl 0156.41102

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E.Artin, Algebraic Numbers and Algebraic Functions. Lecture notes, Princeton University and New York University, 1950–1951.
[2] E. Artin andG. Whaples, An axiomatic characterization of fields by the product formula for valuations. Bull. Amer. Math. Soc.51, 469–492 (1945). · Zbl 0060.08302 · doi:10.1090/S0002-9904-1945-08383-9
[3] N.Bourbaki, Algèbre Commutative, Chap. VI. Paris 1964. · Zbl 0205.34302
[4] J. W. S.Cassels, Introduction to the Geometry of Numbers. Berlin 1959. · Zbl 0086.26203
[5] C.Chevalley, Algebraic Functions of One Variable. New York 1951. · Zbl 0045.32301
[6] R. Dedekind undH. Weber, Theorie der algebraischen Funktionen einer Veränderlichen. J. reine angew. Math.92, 181–290 (1882). · doi:10.1515/crll.1882.92.181
[7] M. Eichler, Ein Satz über Linearformen in Polynombereichen. Arch. Math.10, 81–84 (1959). · Zbl 0092.01703 · doi:10.1007/BF01240765
[8] M.Eichler, Einführung in die Theorie der Algebraischen Zahlen und Funktionen. Basel und Stuttgart 1963. · Zbl 0152.19501
[9] M. Eichler, Differentiale und Riemann-Rochscher Satz in Algebraischen Funktionenkörpern einer Variablen. Abh. Math. Sem. Univ. Hamburg24, 6–11 (1960). · Zbl 0094.02501 · doi:10.1007/BF02942016
[10] H.Hasse, Zahlentheoric. Berlin 1949.
[11] E. Lamprecht, Übers-Differenten und Differentiale algebraischer Funktionenkörper einer Veränderlichen. Arch. Math.4, 412–424 (1953). · Zbl 0051.27301 · doi:10.1007/BF01899259
[12] K. Mahler, An analogue to Minkowski’s geometry of numbers in a field of series. Ann. of Math., II. Ser.42, 481–522 (1941). · JFM 67.0140.01 · doi:10.2307/1968914
[13] E.Weiss, Algebraic Number Theory. New York 1963. · Zbl 0115.03601
[14] O.Zariski and P.Samuel, Commutative Algebra, Vol. 1. Princeton 1958. · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.