[1] |
H. Carayol, Sur les représentations -adiques associées aux formes modulaires de Hilbert,Ann. Sci. Ec. Norm. Sup. IV, Ser. 19 (1986), 409--468. |

[2] |
P. Cartier, La conjecture locale de Langlands pour GL(2) et la démonstration de Ph. Kutzko, inBourbaki Seminar, Vol. 1979/1980, Lecture Notes in Math.,842, Springer, (1981), 112--138.
· doi:10.1007/BFb0089931 |

[3] |
C.-L. Chai, Arithmetic minimal compactification of the Hilbert-Blumenthal moduli spaces,Ann. of Math. (2)131 (1990), no. 3, 541--554. · Zbl 0754.14030
· doi:10.2307/1971469 |

[4] |
J. Coates,p-adic L-functions and Iwasawa’s theory, inAlgebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press (1977), 269--353. |

[5] |
P. Deligne, Formes modulaires et représentations de GL(2), inModular functions of one variable, II, Lecture Notes in Math.,349, Springer, (1973), 55--105.
· doi:10.1007/978-3-540-37855-6_2 |

[6] |
P. Deligne, K. Ribet, Values of abelian L-functions at negative integers over totally real fields,Invent. Math. 59 (1980), no. 3, 227--286. · Zbl 0434.12009
· doi:10.1007/BF01453237 |

[7] |
B. De Smit, K. Rubin, R. Schoof, Criteria for complete intersections, inModular forms and Fermat’s Last Theorem, Springer (1997), 343--356. · Zbl 0903.13003 |

[8] |
F. Diamond, On deformation rings and Hecke rings,Ann. of Math. (2),144 (1996), no. 1, 137--166. · Zbl 0867.11032
· doi:10.2307/2118586 |

[9] |
F. Diamond, The Taylor-Wiles construction and multiplicity one,Invent. Math. 128 (1997), no. 2, 379--391. · Zbl 0916.11037
· doi:10.1007/s002220050144 |

[10] |
F. Diamond, R. Taylor, Non optimal levels of mod modular representations,Invent. Math. 115 (1994), no. 3, 435--462. · Zbl 0847.11025
· doi:10.1007/BF01231768 |

[11] |
J.-M. Fontaine, B. Mazur, Geometric Galois representations, inElliptic Curves, modular forms, and Fermat’s Last Theorem (Hong Kong, 1993), Internat. Press (1995), 41--78. |

[12] |
S. Gelbart,Automorphic Forms on Adele Groups, Annals of Math. Studies, Vol. 83, Princeton University Press (1975). · Zbl 0329.10018 |

[13] |
P. Gérardin, J.-P. Labesse, The solution of a base change problem for GL(2) (following Langlands, Saito, Shintani), inAutomorphic forms, representations and L-functions, Proc. Symp. Pure Math., XXXIII, part 2, 115--133. |

[14] |
A. Grothendieck, Éléments de la géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas (deuxième partie),Publ. Math. de l’IHES 24 (1965). |

[15] |
H. Hida, Onp-adic Hecke algebras for GL2 over totally real fields,Ann. of Math. (2)128, (1988), no. 2, 295--384. · Zbl 0658.10034
· doi:10.2307/1971444 |

[16] |
H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields, inAlgebraic number theory, Adv. Stud. Pure Math.,17, Academic Press (1989) 139--169. · Zbl 0742.11026 |

[17] |
H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, inAlgebraic analysis, geometry, and number theory (Baltimore, MD 1988), John Hopkins Univ. Press (1989) 115--134. · Zbl 0782.11017 |

[18] |
K. Iwasawa, On {su} extensions of algebraic number fields,Ann. of Math. (2)98 (1973), 246--326. · Zbl 0285.12008
· doi:10.2307/1970784 |

[19] |
H. Jacquet, R. Langlands,Automorphic forms on GL(2),Lecture Notes in Math.,114, Springer (1970). · Zbl 0236.12010 |

[20] |
P. Kutzko, The Langlands conjecture for GL2 of a local field,Ann. of Math. (2)112, (1980), no. 2, 381--412. · Zbl 0469.22013
· doi:10.2307/1971151 |

[21] |
H. Matsumura,Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge Univ. Press (1989). · Zbl 0666.13002 |

[22] |
B. Mazur, Deforming Galois representations, inGalois Groups over Q, vol. 16, MSRI Publications, Springer (1989). · Zbl 0714.11076 |

[23] |
M. Nagata,Local Rings, Interscience Tracts in Pure and Applied Mathematics, no. 13, Interscience Publishers (1962). |

[24] |
R. Ramakrishna, On a variation of Mazur’s deformation functor,Comp. Math. 87 (1993), 269--286. · Zbl 0910.11023 |

[25] |
M. Raynaud, Théorèmes de Lefschetz en cohomologie cohérent et en cohomologie étale,Bull. Soc. Math. France, Mém. no. 41. Supplément au Bull. Soc. Math. France, Tome 103, Société Mathématique de France (1975). · Zbl 0323.14007 |

[26] |
K. Ribet, Congruence relations between modular forms,Proc. Int. Cong. of Math. 17 (1983), 503--514. |

[27] |
M. Schlessinger, Functors on Artin rings,Trans. AMS 130 (1968), 208--222. · Zbl 0167.49503
· doi:10.1090/S0002-9947-1968-0217093-3 |

[28] |
J-P. Serre, Sur le résidu de la function zêtap-adique d’un corps de nombres,C.R. Acad. Sc. Paris 287, Serie A (1978), 183--188. |

[29] |
H. Shimizu, Theta series and modular forms on GL2,J. Math. Soc. Japan 24 (1973), 638--683. · Zbl 0241.10016
· doi:10.2969/jmsj/02440638 |

[30] |
G. Shimura, The special values of the zeta functions associated with Hilbert modular forms,Duke Math. J. 45 (1978), 637--679. · Zbl 0394.10015
· doi:10.1215/S0012-7094-78-04529-5 |

[31] |
C. Skinner, A. Wiles, Ordinary representations and modular forms,Proc. Nat. Acad. Sci. USA 94 (1997), no. 20, 10520--10527. · Zbl 0924.11044
· doi:10.1073/pnas.94.20.10520 |

[32] |
R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras,Ann. of Math. (2),141 (1995), no. 3, 553--572. · Zbl 0823.11030
· doi:10.2307/2118560 |

[33] |
M. Waldschmidt, A lower bound for thep-adic rank of the units of an algebraic number field, inTopics in classical number theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. János Bolyai, 34, North-Holland (1984), 1617--1650. |

[34] |
L. Washington, The non-p-part of the class number in a cyclotomicZ p -extension,Invent. Math. 49 (1978), no. 1, 87--97. · Zbl 0403.12007
· doi:10.1007/BF01399512 |

[35] |
A. Weil,Basic Number Theory, Springer (1967). · Zbl 0176.33601 |

[36] |
A. Wiles, Modular elliptic curves and Fermat’s Last Theorem,Ann. of Math. (2),142 (1995), 443--551. · Zbl 0823.11029
· doi:10.2307/2118559 |

[37] |
A. Wiles, On ordinary {$\lambda$}-adic representations associated to modular forms,Invent. Math. 94 (1988), 529--573. · Zbl 0664.10013
· doi:10.1007/BF01394275 |

[38] |
A. Wiles, Onp-adic representations for totally real fields,Ann. of Math. (2),123 (1986), 407--456. · Zbl 0613.12013
· doi:10.2307/1971332 |