×

zbMATH — the first resource for mathematics

On the Netto inversion number of a sequence. (English) Zbl 0157.03403

MSC:
05A05 Permutations, words, matrices
Keywords:
combinatorics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. N. David and D. E. Barton, Combinatorial chance, Hafner Publishing Co., New York, 1962.
[2] Dominique Foata, Étude algébrique de certains problèmes d’analyse combinatoire et du calcul des probabilités, Publ. Inst. Statist. Univ. Paris 14 (1965), 81 – 241 (French). · Zbl 0133.41304
[3] P. A. MacMahon, Combinatory analysis, Vol. 1, Cambridge Univ. Press, Cambridge, 1915. · JFM 46.0118.07
[4] P. A. MacMahon, The Indices of Permutations and the Derivation Therefrom of Functions of a Single Variable Associated with the Permutations of any Assemblage of Objects, Amer. J. Math. 35 (1913), no. 3, 281 – 322. · JFM 44.0076.02 · doi:10.2307/2370312 · doi.org
[5] -, Two applications of general theorems in combinatory analysis, Proc. London Math. Soc. 15 (1916), 314-321.
[6] E. Netto, Lehrbuch der Combinatorik, Chelsea, New York, 1901. · JFM 32.0217.01
[7] M. P. Schützenberger, On a factorisation of free monoids, Proc. Amer. Math. Soc. 16 (1965), 21 – 24. · Zbl 0219.20039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.