×

zbMATH — the first resource for mathematics

A generalized Floquet theory. (English) Zbl 0157.14703

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.Bellman, Stability Theory of Differential Equations. New York 1953. · Zbl 0053.24705
[2] E. A.Coddington and N.Levinson, Theory of Ordinary Differential Equations. New York 1955. · Zbl 0064.33002
[3] I. J. Epstein, Periodic Solutions of Systems of Differential Equations. Proc. Amer. Math. Soc.13, 690–694 (1962). · Zbl 0127.30501
[4] J. K.Hale, Oscillations in Non-linear Systems. New York 1963. · Zbl 0115.07401
[5] M. Laitoch, Eine Erweiterung der Methode Floquets zur Darstellung des Fundamental-systems von Lösungen der Differentialgleichung zweiter Ordnungy”=Q(x)y. Czech. Math. J.5, (80) 164–174 (1955). (Math. Rev.17, 612 (1956).) · Zbl 0067.06102
[6] D. C. Lewis, Autosynartetic Solutions of Differential Equations. Amer. J. Math.83, 1–32 (1961). · Zbl 0156.31504
[7] D. C.Lewis, Autosynartetic Families of Solutions. In: Int. Symp. Nonlinear Differential Equations and Nonlinear Mechanics, ed. by J. P.La Salle and S.Lefschetz, p. 99–104. New York 1963. · Zbl 0144.09101
[8] J. Maravčik, Generalization of Floquet’s theory for ordinary linear differential equations ofn th order. Casopis Pěst. Mat.91, 8–17 (1966). (Math. Rev.33, 329, 58 (1967).)
[9] J. S. Muldowney, Linear Systems of Differential Equations with Periodic Solutions. Proc. Amer. Math. Soc.18, 22–27 (1967). · Zbl 0154.09401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.