×

A duality theory for abstract mathematical programs with applications to optimal control theory. (English) Zbl 0157.16004


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Balakrishnan, A.V, Optimal control problems in Banach spaces, J. SIAM control, ser. A, 3, 152-180, (1965) · Zbl 0178.44601
[2] Bishop, E; Phelps, R.R, The support functionals on a convex set, (), 27-35 · Zbl 0149.08601
[3] Charnes, A; Cooper, W.W; Kortanek, K, Duality in semi-infinite programs and some works of Haar and caratheodory, Managm. sci., 9, 209-228, (1963) · Zbl 0995.90615
[4] Charnes, A; Cooper, W.W; Kortanek, K, Semi-infinite programs which have no duality gap, Managm. sci., 12, 113-121, (1965) · Zbl 0143.42304
[5] Cottle, R.W, Symmetric dual quadratic programs, Quart appl. math., 21, 237-243, (1963) · Zbl 0127.36802
[6] Dantzig, G.B, Linear programming and extensions, (1963), Princeton Univ. Press Princeton, New Jersey · Zbl 0108.33103
[7] Dieter, U, Optimierungsaufgaben in topologischen vektorräumen I: dualitäts-theorie, Z. wahrscheinlichkeitstheorie verw. geb., 5, 89-117, (1966) · Zbl 0147.38601
[8] Duffin, R.J, Infinite programs, Ann. math. study, 38, 157-170, (1956) · Zbl 0072.37603
[9] Duffin, R.J; Karlowitz, L.A, An infinite linear program with a duality gap, Managm. sci., 12, 122-134, (1965) · Zbl 0133.42604
[10] Dunford, N; Schwartz, J.T, Linear operators, part I: general theory, (1958), Wiley (Interscience) New York
[11] Friedman, A, Optimal control in Banach spaces, J. math. anal. appl., 19, 35-55, (1967) · Zbl 0155.15902
[12] Gale, D; Kuhn, H.W; Tucer, A.W, Linear programming and the theory of games, (), 317-329
[13] Halkin, H, Optimal control as programming in infinite dimensional spaces, (1966), Centro Internazionale Mathematico Estivo (C.I.M.E.) Bressanone, Italy · Zbl 0183.17501
[14] Halkin, H, Nonlinear nonconvex mathematical programs in an infinite dimensional space, (), 10-25
[15] Hermes, H, On the closure and convexity of attainable sets in finite and infinite dimensions, SIAM J. control, 5, 409-417, (1967) · Zbl 0166.09301
[16] Jacobs, M.Q, Some existence theorems for linear optimal control problems, SIAM J. control, 5, 418-437, (1967) · Zbl 0218.49002
[17] Jacobs, M.Q, Attainable sets in linear systems with unbounded control, (), 46-53 · Zbl 0172.13501
[18] Kelley, J.L; Namioka, I, Linear topological spaces, (1963), Van Norstand Princeton, New Jersey
[19] Klee, V, The support property of a convex set in a normed linear space, Duke math. J., 15, 767-772, (1948) · Zbl 0031.21804
[20] Klee, V, Convex sets in linear spaces, Duke math. J., 18, 443-466, (1951) · Zbl 0042.36201
[21] Klee, V, On a question of Bishop and Phelps, Amer. J. math., 83, 95-98, (1963) · Zbl 0117.07901
[22] Kirlova, F.M, Applications on functional analysis to the theory of optimal processes, SIAM J. on control, 5, 25-50, (1967) · Zbl 0154.10205
[23] Kretchmer, K.S, Programmes in paired spaces, Canad. J. math., 13, 221-238, (1961) · Zbl 0097.14705
[24] {\scJ. L. Lions}. Sur quelques problèmes d’optimisation dans les équations d’évolution linéaires de type parabolique. In “Applications of Functional Analysis to Optimization.” Academic Press, New York.
[25] Lions, J.L, Optimisation pour certaines classes d’équations d’évolution non linéaires, Mat. para ed applicata, LXXXII, 275-299, (1966) · Zbl 0151.15003
[26] Neustadt, L.W, An abstract variational theory with applications to a broad class of optimization problems. I: general theory, SIAM J. control, 4, 505-527, (1966) · Zbl 0166.09401
[27] Neustadt, L.W, The existence of optimal controls in the absence of convexity conditions, J. math. anal. appl., 7, 110-117, (1963) · Zbl 0115.13304
[28] Pontryagin, L.S; Boltyanskii, V.G; Gramkelidze, R.V; Mischenko, E.F, The mathematical theory of optimal processes, (1962), Wiley New York
[29] Pshenichniy, B.N, Linear optimum control problems, SIAM J. control, 4, 577-593, (1966) · Zbl 0161.29303
[30] Rockafellar, R.T, Duality and stability in extremum problems involving convex functions, Pacific J. math., 2, 167-187, (1967) · Zbl 0154.44902
[31] {\scR. T. Rockafellar}. Convex functions and duality in optimization problems and dynamics. In “Mathematical Systems Theory and Economics” (W. H. Kuhn and J. P. Szego, ed.). Springer-Verlag, Berlin (to appear). · Zbl 0186.23901
[32] {\scR. T. Rockafellar}. Duality in nonlinear programming. Mathematics of the Decision Sciences, Symposia in Applied Mathematics (to appear). · Zbl 0231.90037
[33] {\scR. T. Rockafellar}. “Convex Analysis.” Princeton Univ. Press, Princeton, New Jersey (in press). · Zbl 0932.90001
[34] Slater, M, Lagrange multipliers revisited: A contribution to non-linear programming, Cowles commission discussion paper, math. 403, (1950)
[35] Van Slyke, R, Mathematical programming and optimal control, () · Zbl 0197.45602
[36] Van Slyke, R; Wets, R, Programming under uncertainty and stochastic optimal control, SIAM J. control, 4, 179-193, (1966) · Zbl 0143.21302
[37] Van Slyke, R; Wets, R, Stochastic programs in abstract spaces, (), 25-45
[38] Wolfe, P, A duality theorem for non-linear programming, Q. appl. math., 19, 239-244, (1961) · Zbl 0109.38406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.