Giles, J. R. Classes of semi-inner-product spaces. (English) Zbl 0157.20103 Trans. Am. Math. Soc. 129, 436-446 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 106 Documents Keywords:functional analysis PDF BibTeX XML Cite \textit{J. R. Giles}, Trans. Am. Math. Soc. 129, 436--446 (1967; Zbl 0157.20103) Full Text: DOI OpenURL References: [1] Earl Berkson, Some types of Banach spaces, Hermitian operators, and Bade functionals, Trans. Amer. Math. Soc. 116 (1965), 376 – 385. · Zbl 0135.36502 [2] Herbert Busemann, The foundations of Minkowskian geometry, Comment. Math. Helv. 24 (1950), 156 – 187. · Zbl 0040.37502 [3] James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396 – 414. · Zbl 0015.35604 [4] M. M. Day, Normed linear spaces, Springer, Berlin, 1962. · Zbl 0100.10802 [5] R. Fortet, Remarques sur les espaces uniformément convexes, Bull. Soc. Math. France 69 (1941), 23 – 46 (French). · Zbl 0026.32401 [6] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1959. · Zbl 0634.26008 [7] Robert C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265 – 292. · Zbl 0037.08001 [8] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29 – 43. · Zbl 0102.32701 [9] Hanno Rund, Zur Begründung der Differentialgeometrie der Minkowskischen Räume, Arch. Math. 3 (1952), 60 – 69 (German). · Zbl 0047.41001 [10] -, The differential geometry of Finsler space, Springer, Berlin, 1959. [11] V. Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N. S.) 27 (1940), 643 – 648 (French). · Zbl 0023.32604 [12] Albert Wilansky, Functional analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. · Zbl 0229.54001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.