zbMATH — the first resource for mathematics

Du prolongement des espaces fibrés et des structures infinitésimales. (French) Zbl 0157.28506

Full Text: DOI Numdam EuDML
[1] D. BERNARD, Sur la géométrie différentielle des G-structures, Ann. Inst. Fourier, 10 (1960). · Zbl 0095.36406
[2] C. CHEVALLEY, Theory of Lie groups, Princ. Univ. Press (1948). · Zbl 0031.24803
[3] C. EHRESMANN, a) Prolongement d’une variété différentiable, C.R.A.S., Paris (1951-1952).
[4] C. EHRESMANN b) Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie, Coll. géom. diff. Strasbourg (1953).
[5] C. EHRESMANN c) Structures locales, Ann. Math. Pura Appl., 36 (1954). · Zbl 0055.42002
[6] C. EHRESMANN d) Sur LES connexions d’ordre supérieur, Atti del V cong. dell’Un. Math. Italia, Torino (1956).
[7] W. GUILLEMIN et S. STERNBERG, Transitive differential geometry, Bull. of the A.M.S. 70 (1964). · Zbl 0121.38801
[8] R. GODEMENT, Théorie des faisceaux, Hermann Paris (1958). · Zbl 0080.16201
[9] J. L. KOSZUL, On fibre bundles and differential geometry, Tata Inst. Bombay (1960).
[10] P. LIBERMANN, a) Pseudogroupes infinitésimaux, Bull. Soc. Math. France, 87 (1959). · Zbl 0198.26801
[11] P. LIBERMANN b) Sur la géométrie des prolongements des espaces fibrés vectoriels, Ann. Inst. Fourier (1964). · Zbl 0126.38201
[12] A. LICHNEROWICZ, a) Théorie des connexions et des groupes d’holonomie. Ed. Cremonese Roma (1955). · Zbl 0116.39101
[13] A. LICHNEROWICZ b) Géométrie des groupes de transformation, Dunod Paris (1958). · Zbl 0096.16001
[14] Y. MATSUSHIMA, a) Pseudogroups de Lie transitifs, Sem. Bourbaki (1955).
[15] Y. MATSUSHIMA b) Sur LES algèbres de Lie linéaires semi-involutives. Coll. de topologie Strasbourg (1954). · Zbl 0068.02801
[16] R. PALAIS, a) A global formulation of the Lie theory of transformation groups, Memoir A.M.S. (1957). · Zbl 0178.26502
[17] R. PALAIS b) Differential operators on vector bundles sem. on the Atiyah-siger index theorem, Princ. Univ. Press Study 57 (1965).
[18] N. V. QUE, a) Prolongement des groupoides de Lie, C.R.A.S. Paris (1963). · Zbl 0123.38902
[19] N. V. QUE b) De la connexion d’ordre supérieur, C.R.A.S. Paris (1964). · Zbl 0134.18102
[20] D. G. QUILLEN, Formal properties of over-determined systems of linear partial differential equations, (Thèse Havard, 1964). · Zbl 1295.35005
[21] A. M. RODRIGUÈS, The first and the second fundamental theorems of Lie for Lie pseudogroups, Am. Journ. of Math. 84 (1962). · Zbl 0192.12703
[22] D. C. SPENCER, Deformation of structures defined by transitive continuous pseudogroups, Ann. of Math. 76 (1962). · Zbl 0124.38601
[23] N. STEENROD, The topology of fibre bundles, Princ. Univ. Press (1951). · Zbl 0054.07103
[24] R. THOM, Un lemme sur LES applications différentiables, Bol. de la Soc. Math. Mexicana 2nd Series (1956). · Zbl 0075.32201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.