×

zbMATH — the first resource for mathematics

On maximal congruences and finite semisimple semigroups. (English) Zbl 0158.02101

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. · Zbl 0111.03403
[2] P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. · Zbl 0141.01002
[3] R. A. Dean and Robert H. Oehmke, Idempotent semigroups with distributive right congruence lattices, Pacific J. Math. 14 (1964), 1187 – 1209. · Zbl 0128.25003
[4] Paul Dubreil, Contribution à la théorie des demi-groupes. II, Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat e Appl. (5) 10 (1951), 183 – 200 (French). · Zbl 0045.00802
[5] Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959.
[6] Hans-Jürgen Hoehnke, Structure of semigroups, Canad. J. Math. 18 (1966), 449 – 491. · Zbl 0149.02402 · doi:10.4153/CJM-1966-048-1 · doi.org
[7] Robert H. Oehmke, On the structures of an automaton and its input semi-group, J. Assoc. Comput. Mach. 10 (1963), 521 – 525. · Zbl 0158.25602 · doi:10.1145/321186.321194 · doi.org
[8] D. Rees, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387 – 400. · JFM 66.1207.01
[9] E. J. Tully Jr., Representation of a semigroup by transformations acting transitively on a set, Amer. J. Math. 83 (1961), 533 – 541. · Zbl 0116.25504 · doi:10.2307/2372893 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.