×

Disconnexités des spectres d’anneaux et des préschémas. (French) Zbl 0158.03902


PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] BALCERZYK (S.) . - On projective dimension of direct limits of modules , Bull. Acad. polon. Sc., Série Sc. math. astr. et phys., t. 14, 1966 , p. 241-244. MR 35 #2946 | Zbl 0158.28902 · Zbl 0158.28902
[2] BASS (Hyman) . - Big projective modules are free , Illinois J. of Math., t. 7, 1963 , p. 24-31. Article | MR 26 #1341 | Zbl 0115.26003 · Zbl 0115.26003
[3] BERSTEIN (I.) . - On the dimension of modules and algebras, IX. , Nagoya math. J., t. 13, 1958 , p. 83-84. Article | MR 20 #7048 | Zbl 0084.26602 · Zbl 0084.26602
[4] BOURBAKI (Nicolas) . - Livre 2 : Algèbre . - Paris, Hermann. · Zbl 1105.18001
[5] BOURBAKI (Nicolas) . - Livre 3 : Topologie générale . - Paris, Hermann. · Zbl 1107.54001
[6] BOURBAKI (Nicolas) . - Algèbre commutative . - Paris, Hermann. · Zbl 1107.13002
[7] GODEMENT (Roger) . - Topologie algébrique et théorie des faisceaux . - Paris, Hermann, 1958 (Act. scient. et ind., 1252 ; Publ. Inst. Math. Univ. Strasbourg, 13). Zbl 0080.16201 · Zbl 0080.16201
[8] GROTHENDIECK (A.) . - Éléments de géométrie algébrique, I . - Paris, Presses universitaires de France, 1960 (Institut des Hautes Études Scientifiques, Publications mathématiques, 4). Numdam | Zbl 0118.36206 · Zbl 0118.36206
[9] GROTHENDIECK (A.) . - Éléments de géométrie algébrique, IV . - Paris, Presses universitaires de France, 1964 - 1966 (Institut des Hautes Études Scientifiques, Publications mathématiques, 20, 24 et 28). Numdam
[10] JENSEN (C. U.) . - On cohomological dimensions of rings with countably generated ideals , Math. Scand., Kobenhavn, t. 18, 1966 , p. 97-107. MR 34 #7611 | Zbl 0145.26605 · Zbl 0145.26605
[11] KAPLANSKI (I.) . - Projective modules , Annals of Math., Series 2, t. 68, 1958 , p. 372-377. Zbl 0083.25802 · Zbl 0083.25802
[12] LAZARD (D.) . - Sur les modules plats , C. R. Acad. Sc., t. 258, 1964 , p. 6313-6316. MR 29 #5883 | Zbl 0135.07604 · Zbl 0135.07604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.