×

Polar sets and removable singularities of partial differential equations. (English) Zbl 0158.11004


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agmon, S., Douglis, A., andNirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations.Comm. Pure Appl. Math. 12, No. 4, pp. 623–727 (1959). · Zbl 0093.10401
[2] Aronson, D. G., Removable singularities for linear parabolic equations.Archive Rat. Mech. Anal. 17, No. 1, pp. 79–84 (1964). · Zbl 0128.09402
[3] Bochner, S., andMartin, W. T.,Several Complex Variables, Princeton, 1948. · Zbl 0041.05205
[4] Carleson, L.,Selected Problems on Exceptional Sets (Mimeographed) Uppsala, 1961.
[5] Grusin, V. V., A Problem in the entire space for a certain class of partial differential equations.Dokl. Akad. Nauk SSSR 146, pp. 1251–1254 (1962).
[6] Hörmander, L., andLions, J. L., Sur la complétion par rapport à une integrate de Dirichlet.Math. Scand. 4, pp. 259–270 (1956). · Zbl 0078.28003
[7] Jones Jr., B. F., Singular integrals and parabolic equations.Bull. A.M.S. 69, pp. 501–503 (1963). · Zbl 0117.06602
[8] Lions, J.-L., Une construction d’espaces d’interpolation.C.R. Acad. Sc. 251, pp. 1853–1855 (1961). · Zbl 0118.10702
[9] Pini, B., Sui punti singolari delle soluzioni delle equazioni paraboliche lineari.Ann. dell’ Univ. di Ferrara Sezione VII-Scienze Mat. 2, pp. 2–12 (1953).
[10] Serrin, J., Removable singularities of solutions of elliptic equations.Arch. Rat. Mech. Anal. 17, No. 1, pp. 67–78 (1964). · Zbl 0135.15601
[11] Serrin, J., Local behavior of solutions of quasi-linear equations.Acta Math. 111, pp. 247–302 (1964). · Zbl 0128.09101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.