×

zbMATH — the first resource for mathematics

Optimal approximation. (English) Zbl 0158.13601

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahlberg, J.H; Nilson, E.N; Walsh, J.L, Fundamental properties of generalized splines, (), 1412-1419 · Zbl 0136.36204
[2] Ahlberg, J.H; Nilson, E.N; Walsh, J.L, Convergence properties of generalized splines, (), 344-350 · Zbl 0136.36301
[3] Ahlberg, J.H; Nilson, E.N; Walsh, J.L, Extremal, orthogonality, and convergence properties of multidimensional splines, J. math. anal. appl., 12, 27-48, (1965) · Zbl 0136.04802
[4] Ahlberg, J.H; Nilson, E.N; Walsh, J.L, Best approximation and convergence properties of higher-order spline approximations, J. math. mech., 14, 231-244, (1965) · Zbl 0141.06801
[5] Ahlberg, J.H; Nilson, E.N, Orthogonality properties of spline functions, J. math. anal. appl., 11, 321-337, (1965) · Zbl 0136.04801
[6] Ahlberg, J.H; Nilson, E.N, The approximation of linear functionals, SIAM J. numer. anal., 3, 173-182, (1966) · Zbl 0147.05102
[7] Atteia, M, Généralisation de la définition et des propriétés des “spline fonctions”, Compt. rend. acad. sci.m Paris, 260, 3550-3553, (1965) · Zbl 0163.37703
[8] Atteia, M, “splines-fonctions” généralisées, Compt. rend. acad. sci., Paris, 261, 2149-2152, (1965) · Zbl 0127.06601
[9] Atteia, M, Existence et détermination des fonctions “spline” a plusieurs variables, Compt. rend. acad. sci., Paris, Sér. A-B, 262, 575-578, (1966) · Zbl 0168.35002
[10] Atteia, M, Étude de certains noyaux et théorie des fonctions “spline” en analyse numérique, Thèse université de Grenoble, (1966)
[11] Birkhoff, G; de Boor, C.R, Error bounds for spline interpolation, J. math. mech., 13, 827-835, (1964) · Zbl 0143.28503
[12] Birkhoff, G; de Boor, C.R, Piecewise polynomial interpolation and approximation, (), 164-190 · Zbl 0136.04703
[13] de Boor, C.R, Bicubic spline interpolation, J. math. phys. (Cambridge), 41, 212-218, (1962) · Zbl 0108.27103
[14] de Boor, C.R, Best approximation properties of spline functions of odd degree, J. math. mech., 12, 747-749, (1963) · Zbl 0116.27601
[15] de Boor, C.R; Lynch, R.E, On splines and their minimum properties, J. math. mech., 15, 953-969, (1966) · Zbl 0185.20501
[16] Carasso, C, Méthodes numériques pour l’obtention de fonctions-spline, ()
[17] Davis, P.J, Interpolation and approximation, (1963), Blaisdell New York · Zbl 0111.06003
[18] Golomb, M, Lectures on theory of approximation, () · Zbl 0185.30901
[19] Golomb, M; Weinberger, H.F, Optimal approximation and error bounds, (), 117-190
[20] Greville, T.N.E, Numerical procedures for interpolation by spline functions, SIAM J. numer. anal., 1, 53-68, (1964) · Zbl 0141.33602
[21] Greville, T.N.E, Interpolation by generalized spline functions, () · Zbl 0141.33602
[22] Holladay, J.C, A smoothest curve approximation, Math. tables aids computation, 11, 233-243, (1957) · Zbl 0084.34904
[23] Karlin, S; Ziegler, Z, Chebyshevian spline functions, SIAM J. numer. anal., 3, 514-543, (1966) · Zbl 0171.31002
[24] Meyers, L.F; Sard, A, Best interpolation formulas, J. math. phys. (Cambridge), 29, 198-206, (1950) · Zbl 0040.02801
[25] Nikolski, S.M; Nikolski, S.M, Concerning estimation for approximate quadrature formulas, Usp. mat. nauk., Usp. mat. nauk., 5, 36, 165-177, (1950), (Russian)
[26] Nikolski, S.M, Quadrature formulas, Izv. akad. nauk SSSR ser. mat., 16, 181-196, (1952), (Russian)
[27] Nikolski, S.M, Quadrature formulas, (1958), (Russian)
[28] Sard, A, Integral representations of remainders, Duke math. J., 15, 333-345, (1948) · Zbl 0041.44405
[29] Sard, A, Best approximate integration formulas; best approximation formulas, Am. J. math., 71, 80-91, (1949) · Zbl 0039.34104
[30] Sard, A, Linear approximation, (1963), American Mathematical Society Providence, Rhode Island · Zbl 0115.05403
[31] Sard, A, Uses of Hilbert space in approximation, (), 17-26 · Zbl 0154.14902
[32] Schoenberg, I.J, Contributions to the problem of approximation of equidistant data by analytic functions. part A—on the problem of smoothing or graduation. A first class of analytic approximation formulae, Quart. appl. math., 4, 45-99, (1946) · Zbl 0061.28804
[33] Schoenberg, I.J, Spline interpolation and the higher derivatives, (), 24-28 · Zbl 0136.36201
[34] Schoenberg, I.J, Spline functions and the problem of graduation, (), 947-950 · Zbl 0147.32102
[35] Schoenberg, I.J, Spline interpolation and best quadrature formulae, Bull. am. math. soc., 70, 143-148, (1964) · Zbl 0136.36202
[36] Schoenberg, I.J, On best approximations of linear operators, Nederl. akad. wetenschap. indag. math., 26, 155-163, (1964) · Zbl 0146.08501
[37] Schoenberg, I.J, On interpolation by spline functions and its minimal properties, (), 109-129 · Zbl 0147.32101
[38] Schoenberg, I.J, On trigonometric spline interpolation, J. math. mech., 13, 795-826, (1964) · Zbl 0147.32104
[39] Schoenberg, I.J; Schoenberg, I.J, On monosplines of least deviation and best quadrature formulae, SIAM J. numer. anal., SIAM J. numer. anal., 3, 321-328, (1966) · Zbl 0147.32103
[40] Secrest, D, Best approximate integration formulas and best error bounds, Math. comp., 19, 79-83, (1965) · Zbl 0134.13606
[41] Secrest, D, Numerical integration of arbitrarily spaced data and estimation of errors, SIAM J. numer. anal., 2, 52-68, (1965) · Zbl 0135.38601
[42] Secrest, D, Error bounds for interpolation and differentiation by the use of spline functions, SIAM J. numer. anal., 2, 440-447, (1965) · Zbl 0143.38804
[43] Sharma, A; Meir, A, Degree of approximation of spline interpolation, J. math. mech., 15, 759-767, (1966) · Zbl 0158.30702
[44] Walsh, J.L; Ahlberg, J.H; Nilson, E.N, Best approximation properties of the spline fit, J. math. mech., 11, 225-234, (1962) · Zbl 0196.48603
[45] Weinberger, H.F, Optimal approximation for functions prescribed at equally spaced points, J. res. natl. bur. std. sec. B., 65, 99-104, (1961) · Zbl 0168.14901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.