×

On the Wigner coefficients of the three-dimensional Lorentz group. (English) Zbl 0158.46001


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] D. W. Robinson:Helv. Phys. Acta,35, 403 (1962).
[2] H. Joos:Lectures in Theoretical Physics, vol.8 (Fort Collins, Col., 1965), p. 132. · JFM 60.0741.01
[3] W. N. Bailey:Generalized Hypergeometric Series (Cambridge, 1935). · Zbl 0011.02303
[4] L. Pukanszky:Trans. Ann. Math. Soc.,100, 116 (1961). · Zbl 0105.09603
[5] M. Andrews andJ. Gunson:Journ. Math. Phys.,1391, 19 (1964).
[6] W. J. Holman andL. C. Biederharn:Ann. of Phys.,39, 1 (1966). · Zbl 0144.23804
[7] W. J. Holman abdL. C. Biederharn, after a private communication, have also investigated the same subject following a different approach from ours.
[8] V. Bargmann:Ann. Math.,48, 568 (1947). · Zbl 0045.38801
[9] A. Giovannini andM. Verde:Nuovo Cimento,34, 1936 (1964). · Zbl 0143.22302
[10] J. L. Burchnall andT. W. Chaundy:Proc. London Math. Soc.,50, 72 (1944).
[11] Bateman Manuscript Project, Higher Transcendental Functions, vol1 (New York, 1953), p. 77, eq. (16).
[12] Bateman Manuscript Project, Higher Transcendental Functions, vol.1 (New York, 1953), p. 77, eq. (14).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.