×

Hausdorff means and Gibbs phenomenon. (English) Zbl 0159.08601


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bary, N.: A treatise on trigonometric series. London: Pergamon Press 1964. · Zbl 0129.28002
[2] Besicovitch, A. S.: Almost periodic functions. Cambridge University Press 1932. · Zbl 0004.25303
[3] Hille, E., and J. D. Tamarkin: On the summability of Fourier series III. Mathematische Annalen108, 525-577 (1933). · Zbl 0007.06403
[4] Livingston, A. E.: Some Hausdorff means which exhibit the Gibbs phenomenon. Pacific Journ. Math.3, 407-415 (1953). · Zbl 0050.29101
[5] Lorch, L., and D. J. Newman: Lebesgue constants for regular Hausdorff methods. Canadian Journ. Math.13, 283-298 (1961). · Zbl 0108.06104
[6] Mann, J., and D. J. Newman. The generalized Gibbs phenomenon for regular Hausdorff means. Pacific Journ. Math.15, 551-555 (1965). · Zbl 0132.29401
[7] Mann, J.: Hausdorff means and the Gibbs phenomenon. Trans. Amer. Math. Soc.121, 277-295 (1966). · Zbl 0136.36703
[8] Newman, D. J.: The Gibbs phenomenon for Hausdorff means. Pacific Journ. Math.12, 367-370 (1962). · Zbl 0103.29002
[9] Szász, O.: Gibbs phenomenon for Hausdorff means. Trans. Amer. Math. Soc.69, 440-456 (1959).
[10] Zygmund, A.: Trigonometric series. Cambridge University Press 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.