×

zbMATH — the first resource for mathematics

An \(O(h^ 2)\) method for a non-smooth boundary value problem. (English) Zbl 0159.11703

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ciarlet, P.G.,Variational Methods for Nonlinear Boundary Value Problems, Doctoral Thesis (Case Institute of Technology, 1966).
[2] Ciarlet, P.G., Schultz, M.H., andVarga, R.S.,Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems, I:One Dimensional Problems, Numer. Math.9, 394–430 (1967). · Zbl 0155.20403 · doi:10.1007/BF02162155
[3] Gerschgorin, S.,Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen, Z. Angew. Math. Mech.10, 373–382 (1930). · JFM 56.0467.03 · doi:10.1002/zamm.19300100409
[4] Householder, A.S.,The Theory of Matrices in Numerical Analysis (Blaisdell, New York 1964). · Zbl 0161.12101
[5] Lees, M.,Lecture Notes on Two-Point Boundary Value Problems (Case Institute of Technology, 1965).
[6] Rose, M.E.,Finite Difference Schemes for Differential Equations, Math. Comp.18, 179–195 (1964). · Zbl 0122.12301 · doi:10.1090/S0025-5718-1964-0183123-0
[7] Schechter, S.,Iteration Methods for Nonlinear Problems, Trans. Amer. Math. Soc.104, 179–189 (1962). · Zbl 0106.31801 · doi:10.1090/S0002-9947-1962-0152142-7
[8] Varga, R.S.,Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, N.J. 1962). · Zbl 0133.08602
[9] Varga, R.S.,On a Discrete Maximum Principle, SIAM J. Numer. Anal.3, 355–359 (1966). · Zbl 0143.17603 · doi:10.1137/0703029
[10] Varga, R.S.,Hermite Interpolation-Type Ritz Methods for Two-Point Boundary Value Problems. inPartial Differential Equations, Edited by J. H. Bramble (Academic Press, New York 1966), pp. 365–373.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.