×

zbMATH — the first resource for mathematics

On the differential equations satisfied by period matrices. (English) Zbl 0159.22502

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Dwork (B.), On the Rationality of the Zeta Function of an Algebraic Variety,Amer. J. Math. 82 (1960), 631–648. · Zbl 0173.48501 · doi:10.2307/2372974
[2] Dwork (B.), On the Zeta Function of a Hypersurface,Publ. Math. I.H.E.S., 12 (1962). · Zbl 0173.48601
[3] Dwork (B.), A Deformation Theory for the Zeta Function of a Hypersurface,Proc. Intl. Cong. Math. (1962), 249–258. · Zbl 0173.48601
[4] Dwork (B.), On the Zeta Function of a Hypersurface, II,Ann. Math. (2), 80 (1964), 227–299. · Zbl 1367.14006 · doi:10.2307/1970392
[5] Grothendieck (A.), On the DeRham Cohomology of Algebraic Varieties,Publ. Math. I.H.E.S., 29 (1966). · Zbl 0145.17602
[6] Hirzebruch (F.), Der Satz von Riemann-Roch in Faisceau-Theoretischer Formulierung, einige Anwendungen und offene Fragen,Proc. Intl. Cong. Math. (1954), 457–473.
[7] Kodaira (K.), Some Results in the Transcendental Theory of Algebraic Varieties,Ann. Math. (1), 59 (1954) 86–134. · Zbl 0059.14605 · doi:10.2307/1969834
[8] Manin (J. I.), Algebraic Curves over Fields with Differentiation,A.M.S. Translations (2), vol. 37, 59–78. · Zbl 0151.27601
[9] Monsky (P.) andWashnitzer (G.), The Construction of Formal Cohomology Sheaves,Proc. Nat. Acad. Sci. U.S.A., 52 (1964), 1511–1514. · Zbl 0134.16403 · doi:10.1073/pnas.52.6.1511
[10] Monsky (P.) andWashnitzer (G.),Formal Cohomology, Part I, to appear.
[11] Monsky (P.),Formal Cohomology, Part II, to appear. · Zbl 0162.52601
[12] Reich (D.), Doctoral dissertation, Princeton Univ., 1966.
[13] Washnitzer (G.), andMonsky (P.), Some Properties of Formal Schemes,Mimeographed notes of Math., 529–530, Princeton Univ., 1963.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.